Login | Register

Improving Electromagnetic Shielding with Metallic Nanoparticles


Improving Electromagnetic Shielding with Metallic Nanoparticles

Jalali, Mohsen (2013) Improving Electromagnetic Shielding with Metallic Nanoparticles. PhD thesis, Concordia University.

Text (application/pdf)
Jalali_PhD_F2013.pdf - Accepted Version


Due to major advantages (e.g. weight saving, maintenance advantages), the airframe manufacturers use more and more Polymer Matrix Composites (PMCs) in different parts of aircraft structures. But PMCs have the substantial disadvantage of low conductivity and therefore low Electromagnetic (EM) Shielding. Electromagnetic Interference (EMI) sources are all around and inside aircraft and can potentially threaten the immunity of the aircraft. Metallic meshes have been used to overcome this deficiency. However at high frequencies (UHF, SHF), most of the metallic mesh loses the performance. Regrettably most of the present and upcoming systems onboard of aircraft are functional in the mentioned range of frequencies. Furthermore, passengers are using more and more Personal Electronic Devices (PEDs) onboard of aircraft. Interference caused by PEDs are also in the same range of frequencies. Measured susceptibility caused by PEDs is higher in composite aircraft comparing to metallic one. To develop this disadvantage of composite aircrafts, design of a new lightweight shield, particularly for aeronautic applications, is needed. Metallic nanoparticles have a great potential to be used as new EM shields for aerospace applications. The promising results of this work encourage the designers to use metallic nanoparticles as a new shield for protection of composite aircrafts.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical and Industrial Engineering
Item Type:Thesis (PhD)
Authors:Jalali, Mohsen
Institution:Concordia University
Degree Name:Ph. D.
Program:Mechanical Engineering
Date:28 June 2013
Thesis Supervisor(s):Wuthrich, Rolf
Keywords:Electromagnetic Shielding, Metallic Nanoparticles, Composites
ID Code:977537
Deposited On:13 Jan 2014 15:44
Last Modified:18 Jan 2018 17:44


[1] E. F. Knott, J. F. Shaffer, M. T. Tully, Radar Cross Section, 2nd edition, SciTech Publishing, New York (2004)

[2] Montrose, M. I., EMC and the Printed Circuit Board. New York: Institute of Electrical and Electronics Engineers, (1999)

[3] M.A. Shooman, Study of occurrence rates of electromagnetic interference (EMI) to aircraft with a focus on HIRF (external) high intensity radiated fields, NASA contractor report 194895, (1994)

[4] S.V. Koppen et al, Electromagnetic Interference Assessment of CDMA and GSM Wireless Phones to aircraft navigation radios, NASA Technical Reports Server (2002)

[5] R.W. Borek, Electromagnetic Interference/ Electromagnetic Compatibility, SPARTA, Inc., RTO-AG-300-V14

[6] K. J. Moeller, K. L. Dudley, C. C. Quach, S. V. Koppen, In-Flight Characterization of the Electromagnetic Environment Inside an Airliner, NASA/TP-2001-210831, 2001

[7] T.X. Nguyen, J.J. Mielnik, Small Aircraft RF Interference Path Loss Measurements, NASA/TP-2007-214891 (2007)

[8] www.aviationbusinessindex.com/listings.asp?make=LEARJET&model=35A

[9] C.s A. Grosvenor, R. Johnk, D. Novotny, D. Camell, G. Koepke, N. Canales, Electromagnetic Penetration Studies for Three Different Aircraft, IEEE 978-1-4244-4267-6, 2009

[10] X.C. Tong, Advanced Materials and Design for Electromagnetic Interference Shielding, CRC Press (2009)

[11] J.W. Gooch, J.K. Daher, Electromagnetic Shielding and Corrosion Protection for Aerospace Vehicles, Springer (2007)

[12] M.H. Al-Saleh, Electromagnetic interference shielding mechanisms of CNT/polymer composites, Carbon 47 (2009)

[13] J.B. Jackson, Classical electromagnetic, John Wiley & Sons, New York, 3rd edition (1999)

[14] J.W. Gooch, J.K. Daher, Electromagnetic Shielding and Corrosion Protection for Aerospace Vehicles, Springer (2007)

[15] N.C. Das, Electromagnetic interference shielding of carbon nanotube/ethylene vinyl acetate composites, J Material Science 43 (2008)

[16] S. Rea et al., Shielding Effectiveness of Woven Carbon Fiber Composite Materials for Aerospace Applications, 16th European EMC Conference (2005)

[17] D.R. White, M. Mardiguian, A Handbook Series on Electromagnetic Interference and Compatibility - Electromagnetic Shielding, Control Technologies, Inc. (1988)

[18] H. Ebneth, et al., Metallized carbon fibers and composite materials containing these fibers, US Patent 4,481,249 (1984)

[19] D.H. McClenahan, J. A. Plumer Graphite fiber reinforced laminate structure capable of withstanding lightning strikes, US Patent 4,448,838 (1984)

[20] P. Dixon, May. Dampening cavity resonance using absorber material. RF Design, pp. 16–20. http://rfdesign.com/mag/0405rfdf1.pdf (2004)

[21] Sony. Sony’s electromagnetic wave absorber reduces EMC and SAR problem. http://www.sony.net/Products/SC-HP/cx_news/vol25/pdf/emcstw.pdf (2008)

[22] J. T.Gear, August. Microwave absorbers manage military electronics RF interference. RF Design, pp. 6–9. http://rfdesign.com/mag/08deff1.pdf (2004)

[23] Saville, P. 2005. A review of optimization techniques for layered radar absorbing materials (Technical memorandum 2005-003). Defence R&D Canada. http://pubs.drdc.gc.ca/ PDFS/unc57/p523186.pdf

[24] F. Mayer, High frequency broadband absorption structures, US Patent 5,872,534. (1999)

[25] W. H. Emerson, Electromagnetic wave absorbers and anechoic chambers through the years, IEEE Transactions on Antennas and Propagation 21(4): 484–490 (1973)

[26] Halpern, O., M. H. J. Johnson, and R.W. Wright, Isotropic absorbing layers. US Patent 2,951,247 (1960)

[27] Jones, A. K., and E. R. Wooding, A multilayer microwave absorber. IEEE Transactions on Antennas and Propagation 12(4): 508–509 (1964)

[28] P. Toneguzzo, G. Viau, O. Archer, F. Guillet, E. Bruneton, F. Fievet Vincent, F. Fievet, CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties, Journal of Material Science, 35, 3767-3784 (2000)

[29] Soshin Chikasumi, “Physics of Magnetism” John Wiley and Sons, (1964).

[30] B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Publishing, (1972).

[31] Nicola A. Spaldn, Magnetic Materials: Fundamentals and Device Applications, Cambridge University Press, (2003)

[32] William D. Callister, Jr., Material Science and Engineering: An Introduction, John Wiley & Sons, 2000.

[33] Robert C. O’ Handley, Modern Magnetic Materials: Principles and Applications, Wiley & Sons, 2000.

[34] J.C. Anderson, Magnetism and Magnetic Materials, Chapman and Hall Ltd. (1968).

[35] Kenneth J. Klabunde, Nanoscale Materials in Chemistry, John & Sons, Inc. (2001).

[36] X. Batlle, A. Labarta, Finite-size effects in fine particles: magnetic and transport properties J. Phys. D, 35, R15 (2002)

[37] C. Kittel, Excitation of spin waves in a ferromagnet by a uniform RF field, Phys. Rev., 110 (6), 1295-1297 (1958)

[38] C. Kittel, On the theory of ferromagnetic resonance absorption, Phys. Rev. 37 (2), 155-161 (1948)

[39] C. E. Patton, Dynamic process in magnetic thin films domain wall motion and ferromagnetic resonance, PhD thesis, Cal Tech (1967)

[40] D.R.J. White, Electromagnetic shielding materials and performance, Don White Consultants, Inc. (1980)

[41] W.G. Duff, Fundamental of electromagnetic compatibility, A handbook series of electromagnetic interference and compatibility, vol. 1 (1988)

[42] N.C. Das et al., Electromagnetic interference shielding effectiveness of carbon black and carbon filled EVA and NR based composites, Composites: Part A 31 (2000)

[43] C. J. von Klemperer, Composite electromagnetic interference shielding materials for aerospace applications, Composite Structures 91 (2009)

[44] S. Yang et al., Electromagnetic interference shielding effectiveness of carbon nanofiber-LCP composites, Composites: Part A 36 (2005)

[45] J. L. Wojkiewicz et al., Electromagnetic shielding properties of polyaniline composites, Synthetic Metal (2003)

[46] Bruggeman, DAG Dielectric constant and conductivity of mixtures of isotropic materials Annals of Physics, 24 , 636 – 679 (1935)

[47] M. Y. Koledintseva et al., A Maxwell Garnett Model for dielectric mixtures containing conducting particles at optical frequencies, Progress in Electromagnetic research, Pier 63 (2006)

[48] P.S. Neelakanta, Handbook of electromagnetic materials: monolithic and composite versions and their applications, CRC-Press (1995)

[49] M. Y. Koledintseva et al., Modeling of ferrite-based materials for shielding enclosures, Journal of Magnetism and Magnetic Materials 321 (2009)

[50] M. Y. Koledintseva et al., Modeling of shielding composite materials and structures for microwave frequencies, Progress in Electromagnetic Research, PIER 15 (2009)

[51] S. Chikazumi et al., Physics of magnetic fluids, Journal of Magnetism and Magnetic Materials 65 (1987)

[52] A.-H. Lu et al.; Angew, Nanoengineering of a magnetically separable hydrogenation catalyst, Chem. Int. Ed. 43 (2004)

[53] A. K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials vol. 26 (2005)

[54] S. Mornet et al., Magnetic nanoparticle design for medical applications, Prog. Solid State Chem. vol 34 (2006)

[55] A.C. Pierre, Introduction to Sol–Gel Processing, Kluwer Academic Publishers, Boston, (1998)

[56] M. Jalali, R. Wuthrich, Electromagnetic Shielding of Composite Materials Using Electrochemical Discharge Nanoparticles, EUROEM, Switzerland (2008)

[57] H. Fizeau, L. Foucault. Recherches sur l'intensité de la lumière émise par le
charbon dans l'expérience de davy. Annales de Chimie et de Physique XI, 3:97, (1844)

[58] Ch. Guilpin and J. Garbaz-Olivier, J. Chim. Phys. Phys-Chim. Biol. 75, p. 723. (1978)

[59] H. Vogt and J. Thonstad, J. Appl. Electrochem. 32 (2002), p. 241

[60] M. Jalali, P. Maillard, R. Wüthrich, Towards a Better Understanding of Glass Gravity-Feed Micro-hole Drilling with Electrochemical Discharges, Journal of Micromechanics and Microengineering (2009)

[61] H. Gleiter, Prog. Mater. Sci. 33, 223 (1989)

[62] T. Yamamoto, J. Mazumder, Nanostruct. Mater. 7, 305 (1996)

[63] Y. Champion, J. Bigot, Nanostruct. Mater. 10, 1097 (1998)

[64] W. Chang, G. Skandan, S.C. Danforth, B.H. Kear, Nanostruct. Mater. 4, 507. (1994)

[65] J. Karthikeyan, C.C. Berndt J. Tikkanen, J. Y. Wang, A.H. King, H. Herman, Nanostruct. Mater. 8, 61 (1997).

[66] G. L. Messing, S. C. Zhang, G. V. Jayanthi, J. Am. Ceram. Soc. 76, 2707 (1993)

[67] Reinmann R, Akram M, Temporal investigation of a fast spark discharge in chemically inert gases. J Phys D: Appl Phys 30:1125–113, (1997)

[68] Reinmann R, Akram M, Temporal investigation of a fast spark discharge in chemically inert gases. J Phys D: Appl Phys 30:1125–113 (1997)

[69] http://www.unionprocess.com

[70] Journal of Alloys and Compounds Volume 397, Issues 1-2, 19 July, Pages 276-
281 (2005)

[71] M. Jalali, A.G. Terpstra, R. Wuthrich, Fabrication of Metallic Nanoparticles through Waste of Micro-EDM, EUSPEN, San Sebastian, Spain (2009)

[72] J. L. Dormann et al., Magnetic relaxation in fineparticle systems, Adv. Chem. Phys., vol. 98 (1997)

[73] J. L. Dormann et al., Magnetic relaxation in fineparticle systems, Adv. Chem. Phys., vol. 98 (1997)

[74] S.V. Koppen et al., Electromagnetic Interference Assessment of CDMA and GSM Wireless Phones to aircraft navigation radios, NASA Technical Reports Server (2002)

[75] M. Q. Zhang, H. M. Zeng; Olabisi O, Conducting thermoplastics composites, Handbook of thermoplastics. New York: Marcel Dekker, Inc. (1997)

[76] Gonon P, Boudefel A. Electrical properties of epoxy/silver nanocomposites. J Appl Phys (2006)

[77] Y. Longa et al., Electrical and magnetic properties of polyaniline/Fe3O4 nanostructures, Physica B 370 (2005)

[78] D. I. Tee et al., Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites, Composites Science and Technology 67 (2007)

[79] M. Z. Wu et al., Microwave absorption properties of the core-shell-type iron and nickel nanoparticles, Appl. Phys. Lett. 80 (2002)

[80] S. Singha; M. J. Thomas, Dielectric Properties of Epoxy Nanocomposites, IEEE Transactions on Dielectrics and Electrical Insulation Vol. 15, No. 1 (2008)

[81] J. A. Catrysseet al., Correlation between Shielding Effectiveness Measurements and Alternative Methods for Characterization of Shielding Materials, IEEE Trans EMC, vol. 35, no. 4 (1993)

[82] Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials, ASTM D-4935-99.

[83] Y. K. Hong et al. , Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges, Review of scientific instruments, vol. 74, no. 2 (2003)

[84] M.S. Sarto, A. Tamburrano, Innovative Test Method for the Shielding Effectiveness Measurement of Conductive Thin Films in a Wide Frequency Range, IEEE Trans. EMC, vol. 48, no. 2, (2006)

[85] M. Badic et al., Electromagnetic Characterization of Conductive Magnetic/Non-Magnetic Shielding Materials, IEEE Trans. EMC, vol. 1 (2005)

[86] http://www.fischercc.com/Secondary_Pages/Instrumentation/TEM_ Cells.htm

[87] Military Standard Attenuation Measurement for enclosures, Electromagnetic Shielding, for electronic test purposes, MIL-STD-285
[88] P. Wilson, M. Ma, A study of Techniques for measuring the Electromagnetic Shielding Effectiveness of Materials, National Bureau of Standards Technical Note 1095 (1986)

[89] Y. Yang et al., Novel Carbon Nanotube-Polystyrene Foam Composites for Electromagnetic Interference Shielding, Nano Letters vol. 5, No. 11 (2005)

[90] T. Kuphaldt, Lessons in Electric Circuits, vol. 2, Sixth Edition (2007)

[91] M. Robinson et al., Shielding effectiveness of a rectangular enclosure with a rectangular aperture, Electronics Letters vol. 32, no. 17 (1996)

[92] “http://www.eia.org”, Electronic Industries Association (USA)

[93] Thru-Reflect-Line: An improved technique for calibrating the dual six-port automatic network analyzer”, IEEE Transactions on Microwave theory and Technique, vol. MTT27-12, no. 12 (1979)

[94] W. T. Coffey, D. S. F. Crothers, J. L. Dormann, Y. P. Kamykov, W. Wernsdorfer, Thermally activated relaxation time of a single domain ferromagnetic particle subjected to a uniform field at an oblique angle to the easy axis: Comparison with experimental observation, Physical Review Letters, Vol. 80, pp. 5655-5658 (1998)

[95] Bernhard Wunderlich, Thermal Analysis, Academic Press (1990)

[96] Calorimetry and Thermal Analysis of Polymers, by V. B. F. Mathot, Hanser (1993)

[97] ASTM D6272−10 Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending1

[98] J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics, Wiley (2001)

[99] D. M. Moore, R. C. Reynolds, X-ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press (1997)

[100] R.W.G Wyckoff, Crystal Structures 1, Interscience Publishers (1963)

[101] Jordan J., Jacob K. I., Tannenbaum R., Sharaf M.A., Jasiuk I., Experimental trends in polymer nanocomposites - a review, Mater. Sci. Eng., 393, 1-11 (2005)

[102] Zhu J., Wei S., Ryu J., Sun L., Luo Z., Guo Z., Epoxy Nanocomposites Reinforced with Core-Shell Structured Fe@FeO Nanoparticles: Fabrication and Property Analysis, ACS Applied Materials & Interfaces, 2, 2100-2107. (2010)

[103] Chiang C. L., Chang R. C., Chiu Y. C., Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method, , Thermochim Acta 453 (2) , pp. 97–104 (2007)

[104] R.W.G Wyckoff, Crystal Structures 1, Interscience Publishers (1963)

[105] American Mineralogist Crystal Structure Database (AMCSD), http://rruff.geo.arizona.edu/AMS/amcsd.php

[106] M. Abdullah, Derivation of Scherrer Relation Using an Approach in Basic Physics Course, J. Nano Saintek. Vol. 1 No. 1, (2008)

[107] R. Kainhofer, One way to get the Scherrer formula for size broadening, TU Vienna, (2000)

[108] A. L. Patterson, The scherrer formula for X-ray particle size determination, Physical Review Online Archive (1939)

[109] E. Vallat-Sauvain, Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution, J. Appl. Phys. 87 (2000)

[110] Wu L. Z., Ding J., Jiang H. B., Chen L. F., Ong C. K., Particle size influence to the microwave properties of iron based magnetic particulate composites, , Journal of Magnetism and Magnetic Materials, 285, pp. 233-39 (2005)

[111] Goya G. F. , Lima E. Jr., Arelaro A. D. , Torres T. , Rechenberg H. R. , Rossi L., Marquina C., Ibarra M. R., Magnetic Hyperthermia With Fe3O4 Nanoparticles: The Influence of Particle Size on Energy Absorption, IEEE Trans. Magn., vol. 44, pp. 4444 (2008)

[112] S. Schwyn, E. Garwin, A. Schmidt-Ott, Technical Note, Aerosol Generation by Spark Discharge, J.Aerosol Sci., Vol. 19, No. 5, pp. 639-642 (1988)
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top