Login | Register

The contribution of psychophysical spatial frequency channels to the discrimination of broadband contrast.


The contribution of psychophysical spatial frequency channels to the discrimination of broadband contrast.

Richard, Bruno (2015) The contribution of psychophysical spatial frequency channels to the discrimination of broadband contrast. PhD thesis, Concordia University.

Text (application/pdf)
Richard_PhD_F2015.pdf - Accepted Version


The design and function of the human visual system is thought to have been shaped by the environment and tasks humans have performed throughout evolution and experience. Thus, it is important to establish the association between the properties of natural scenes and the responses of the visual system to these features at a behaviourally relevant level (e.g., psychophysically). A relevant property of natural scenes - which human observers are sensitive to - is the slope of the orientation averaged Fourier amplitude spectrum (α). It characterizes the decrease in amplitude as a function of spatial frequency (1/fα), and has an average value of 1.0 (on logarithmic axes) in natural scenes. The process of detecting a change in α is thought to stem from the activity of one or more spatial frequency channels, but their exact contribution remains to be defined. The overarching goal of this dissertation was to assess the contribution of spatial frequency channels to the detection, and discrimination, of a change in α. We first set out to obtain psychophysical evidence that α discrimination thresholds were dependent on the spatial frequency content of noise stimuli with 1/f amplitude spectra. Our results showed that while all spatial frequency channels contribute to α discrimination, the channel(s) of most influence seem to correlate in peak spatial frequency to the dominant perceptual scale of the noise image. While the contribution of low spatial frequency channels discrimination of steep αs was evident from our data, the influence of higher spatial frequency channels to the discrimination of shallower αs was not. In an attempt to better isolate the role of high spatial frequency channels, we attempted to modulate their activity with trans-cranial Direct Current Stimulation (tDCS) and change α discrimination thresholds. However, while this technique is capable of modulating channels to alter contrast detection, we found tDCS to be an ill-suited technique to alter the response characteristics of channels under suprathreshold conditions (i.e., broadband noise discrimination). As a final effort to isolate the contribution of spatial frequency channels to the discrimination of broadband contrast, we used a classification image paradigm to understand how different spatial frequencies contribute to the identification of a change in α. Interestingly, this method revealed task dependent contributions of spatial frequency channels to the discrimination of α. The identification of α is specific to α, in that increments and decrements in contrast in specific spatial frequency bands signal for particular αs, while the identification of a change in α (i.e., discrimination) was not specific to α. Regardless of the reference α, observers used an increment in contrast in low spatial frequency bands and decrement of contrast in higher spatial frequency bands to identify the odd stimulus. Taken together, these findings demonstrate that the discrimination of α is unspecific to α. Observers to rely on differences in contrast between low and high spatial frequency bands to detect a change in α, but may not be particularly tuned to certain α values as has previously been argued.

Divisions:Concordia University > Faculty of Arts and Science > Psychology
Item Type:Thesis (PhD)
Authors:Richard, Bruno
Institution:Concordia University
Degree Name:Ph. D.
Date:22 October 2015
Thesis Supervisor(s):Johnson, Aaron and Hansen, Bruce
ID Code:980750
Deposited On:16 Jun 2016 15:36
Last Modified:18 Jan 2018 17:51


Abbonizio, G., Langley, K., & Clifford, C. W. G. (2002). Contrast adaptation may enhance contrast discrimination. Spatial Vision, 16(1), 45–58. http://doi.org/10.1163/15685680260433904
Accornero, N., Li Voti, P., La Riccia, M., & Gregori, B. (2007). Visual evoked potentials modulation during direct current cortical polarization. Experimental Brain Research, 178(2), 261–6. http://doi.org/10.1007/s00221-006-0733-y
Adini, Y., Sagi, D., & Tsodyks, M. (2002). Context-enabled learning in the human visual system. Nature, 415(February), 790–793. http://doi.org/10.1038/415790a
Adini, Y., Wilkonsky, A., Haspel, R., Tsodyks, M., & Sagi, D. (2004). Perceptual learning in contrast discrimination: the effect of contrast uncertainty. Journal of Vision, 4(12), 993–1005. http://doi.org/10.1167/4.12.2
Ahumada, Jr., A. J. (1971). Stimulus Features in Signal Detection. The Journal of the Acoustical Society of America, 49(6B), 1751–1756. http://doi.org/10.1121/1.1912577
Ahumada, Jr., A. J. (1975). Time and frequency analyses of auditory signal detection. The Journal of the Acoustical Society of America, 57(2), 385–390. http://doi.org/10.1121/1.380453
Ahumada, Jr., A. J., & Ahumada, A. J. (2002). Classification image weights and internal noise level estimation. Journal of Vision, 2(1), 121–131. http://doi.org/10.1167/2.1.8
Akasaki, T., Sato, H., Yoshimura, Y., Ozeki, H., & Shimegi, S. (2002). Suppressive effects of receptive field surround on neuronal activity in the cat primary visual cortex. Neuroscience Research, 43(3), 207–220. http://doi.org/10.1016/S0168-0102(02)00038-X
Antal, A., Ambrus, G. G., & Chaieb, L. (2014). Toward unraveling reading-related modulations of tDCS-induced neuroplasticity in the human visual cortex. Frontiers in Psychology, 5(June), 1–4. http://doi.org/10.3389/fpsyg.2014.00642
Antal, A., Kincses, T. Z., Nitsche, M. A., Bartfai, O., & Paulus, W. (2004). Excitability Changes Induced in the Human Primary Visual Cortex by Transcranial Direct Current Stimulation: Direct Electrophysiological Evidence. Investigative Ophthalmology & Visual Science, 45(2), 702–707. http://doi.org/10.1167/iovs.03-0688
Antal, A., Kincses, T. Z., Nitsche, M. A., & Paulus, W. (2003a). Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Neuropsychologia, 150(3), 1802–1807. http://doi.org/10.1007/s00221-003-1459-8
Antal, A., Kincses, T. Z., Nitsche, M. A., & Paulus, W. (2003b). Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia, 41(13), 1802–1807. http://doi.org/10.1016/S0028-3932(03)00181-7
Antal, A., Kovács, G., Chaieb, L., Cziraki, C., Paulus, W., & Greenlee, M. W. (2012). Cathodal stimulation of human MT+ leads to elevated fMRI signal: A tDCS-fMRI study. Restorative Neurology and Neuroscience, 30(3), 255–263. http://doi.org/10.3233/RNN-2012-110208
Antal, A., Nitsche, M. A., Kruse, W., Kincses, T. Z., Hoffmann, K.-P., & Paulus, W. (2004). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience, 16(4), 521–527. http://doi.org/10.1162/089892904323057263
Antal, A., Nitsche, M. A., & Paulus, W. (2001). External modulation of visual perception in humans. Neuroreport, 12(16), 3553–3555. http://doi.org/10.1097/00001756-200111160-00036
Antal, A., Nitsche, M. A., & Paulus, W. (2006a). Transcranial direct current stimulation and the visual cortex. Brain Research Bulletin, 68(6), 459–463. http://doi.org/10.1016/j.brainresbull.2005.10.006
Antal, A., Nitsche, M. A., & Paulus, W. (2006b). Transcranial direct current stimulation and visual perception. Perception, 68(3), 459–463. http://doi.org/10.1016/j.brainresbull.2005.10.006
Antal, A., & Paulus, W. (2008). Transcranial direct current stimulation and visual perception. Perception, 37(3), 367–374. http://doi.org/10.1068/p5872
Appelle, S. (1972). Perception and discrimination as a function of stimulus orientation: the “oblique effect” in man and animals. Psychological Bulletin, 78(4), 266–278. http://doi.org/10.1037/h0033117
Arsenault, E., Yoonessi, A., & Baker, C. J. (2011). Higher order texture statistics impair contrast boundary segmentation. Journal of Vision, 11(10), 1–15. http://doi.org/10.1167/11.10.14
Atick, J. J. (1992). Could information theory provide an ecological theory of sensory processing? Network: Computation in Neural Systems, 3(2), 213–251. http://doi.org/10.1088/0954-898X/3/2/009
Atick, J. J., & Redlich, A. N. (1992). What Does the Retina Know about Natural Scenes? Neural Computation, 4(2), 196–210. http://doi.org/10.1162/neco.1992.4.2.196
Azzopardi, G., & Petkov, N. (2012). A CORF computational model of a simple cell that relies on LGN input outperforms the Gabor function model. Biological Cybernetics, 106(3), 177–189. http://doi.org/10.1007/s00422-012-0486-6
Baddeley, R., Abbott, L. F., Booth, M. C. A., Sengpiel, F., Freeman, T., Wakeman, E. A., & Rolls, E. T. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings of the Royal Society B: Biological Sciences, 264(1389), 1775–1783. http://doi.org/10.1098/rspb.1997.0246
Baker, D. H. (2013). What is the primary cause of individual differences in contrast sensitivity? PloS One, 8(7), e69536. http://doi.org/10.1371/journal.pone.0069536
Baker, D. H., & Graf, E. W. (2009). Natural images dominate in binocular rivalry. Proceedings of the National Academy of Sciences, 106(13), 5436–5441. http://doi.org/10.1073/pnas.0812860106
Baker, D. H., & Meese, T. S. (2011). Contrast integration over area is extensive : A three-stage model of spatial summation. Journal of Vision, 11(14), 1–16. http://doi.org/10.1167/11.14.14
Baker, D. H., & Vilidaite, G. (2014). Broadband noise masks suppress neural responses to narrowband stimuli. Frontiers in Psychology, 5(JUL), 1–9. http://doi.org/10.3389/fpsyg.2014.00763
Banks, M. S., Geisler, W. S., & Bennett, P. J. (1987). The physical limits of grating visibility. Vision Research, 27(11), 1915–1924. http://doi.org/10.1016/0042-6989(87)90057-5
Barlow, H. B. (1961). Possible principles underlying the transformations of sensory messages. In W. A. Rosenblith (Ed.), Sensory Communication (pp. 217–234). Cambridge, MA: MIT Press.
Barlow, H. B. (2001). Redundancy reduction revisited. Network, 12(3), 241–253. http://doi.org/10.1088/0954-898X/12/3/301
Barth, E., Beard, B. L., Ahumada, Jr., A. J., Ahumada, A. J., Barth, E., Beard, B. L., & Ahumada, Jr., A. J. (1999). Nonlinear features in vernier acuity. Proceedings of SPIE, 3644(8), 88–96. http://doi.org/10.1117/12.348485
Beard, B. L., & Ahumada, Jr., A. J. (1998). A technique to extract relevant image features for visual tasks. In B. E. Rogowitz & T. N. Pappas (Eds.), Human Vision and Electronic Imaging III (pp. 79–85). San Jose, CA: SPIE. http://doi.org/10.1117/12.320099
Beck, J., Sutter, A., & Ivry, R. (1987). Spatial frequency channels and perceptual grouping in texture segregation. Computer Vision, Graphics, and Image Processing, 37(2), 299–325. http://doi.org/10.1016/S0734-189X(87)80006-3
Bell, A. J., & Sejnowski, T. J. (1997). The “independent components” of natural scenes are edge filters. Vision Research, 37(23), 3327–3338. http://doi.org/10.1016/S0042-6989(97)00121-1
Benson, P. J. (1994). Morph transformation of the facial image. Image and Vision Computing, 12(10), 691–696. http://doi.org/10.1016/0262-8856(94)90044-2
Bergen, J. R., Wilson, H. R., & Cowan, J. D. (1979). Further evidence for four mechanisms mediating vision at threshold: sensitivities to complex gratings and aperiodic stimuli. Journal of the Optical Society of America, 69(11), 1580–1587. http://doi.org/10.1364/JOSA.69.001580
Bex, P. J., & Makous, W. (2002). Spatial frequency, phase, and the contrast of nautral images. Journal of the Optical Society America, A, 19(6), 1096–1106. http://doi.org/10.1364/JOSAA.19.001096
Bex, P. J., Mareschal, I., & Dakin, S. C. (2007). Contrast gain control in natural scenes. Journal of Vision, 7(11), 1–12. http://doi.org/10.1167/7.11.12
Bex, P. J., Solomon, S. G., & Dakin, S. C. (2009). Contrast sensitivity in natural scenes depends on edge as well as spatial frequency structure. Journal of Vision, 9(10), 1–19. http://doi.org/10.1167/9.10.1
Bieniek, M. M., Pernet, C. R., & Rousselet, G. a. (2012). Early ERPs to faces and objects are driven by phase, not amplitude spectrum information: Evidence from parametric, test-retest , single-subject analyses. Journal of Vision, 12(13), 1–24. http://doi.org/10.1167/12.13.12
Bikson, M., Datta, A., & Elwassif, M. (2009). Establishing safety limits for transcranial direct current stimulation. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 120(6), 1033–1034. http://doi.org/10.1016/j.clinph.2009.03.018
Bikson, M., Name, A., & Rahman, A. (2013). Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Frontiers in Numan Neuroscience, 7(October), 688. http://doi.org/10.3389/fnhum.2013.00688
Billock, V. (2000). Neural acclimation to 1/f spatial frequency spectra in natural images transduced by the human visual system. Physica D: Nonlinear Phenomena, 137(3-4), 379–391. http://doi.org/10.1016/S0167-2789(99)00197-9
Blackwell, H. R. (1952). Studies of Psychophysical Methods for Measuring Visual Thresholds. Journal of the Optical Society of America, 42(9), 606–616. http://doi.org/10.1364/JOSA.42.000606
Blakemore, C., & Campbell, F. W. (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. The Journal of Physiology, 203(1), 237–260. http://doi.org/10.1113/jphysiol.1969.sp008862
Blin, O., Mestre, D., Paut, O., Vercher, J. L., & Audebert, C. (1993). GABA-ergic control of visual perception in healthy vonlunteers: Effects of midazolam, a benzodiazepine, on spatio-temporal contrast sensitivity. British Journal of Clinical Pharmacology, 36(2), 117–124. http://doi.org/10.1111/j.1365-2125.1993.tb04206.x
Bonneh, Y., & Sagi, D. (1998). Effects of spatial configuration on contrast detection. Vision Research, 38(22), 3541–3553. http://doi.org/10.1016/S0042-6989(98)00045-5
Boynton, G. M., Demb, J. B., Glover, G. H., & Heeger, D. J. (1999). Neuronal basis of contrast discrimination. Vision Research, 39, 257–269. http://doi.org/10.1016/S0042-6989(98)00113-8
Braddick, O., Campbell, F. W., & Atkinson, J. (1978). Channels in vision: Basic Aspects. In Perception (pp. 3–38). Heidelberg: Springer.
Brady, N., & Field, D. J. (1995). What’s constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns. Vision Research, 35(6), 739–756. http://doi.org/10.1016/0042-6989(94)00172-I
Brady, N., & Field, D. J. (2000). Local contrast in natural images: Normalization and coding efficiency. Perception, 29(9), 1041–1055. http://doi.org/10.1068/p2996
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. http://doi.org/10.1163/156856897X00357
Brand, J., & Johnson, A. P. (2014). Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization. Frontiers in Psychology, 5(December), 1–19. http://doi.org/10.3389/fpsyg.2014.01274
Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: A comparison of neuronal and psychophysical performance. The Journal of Neuroscience, 12(12), 4745–4765.
Burton, G. J., & Moorhead, I. R. (1987). Color and spatial structure in natural scenes. Applied Optics, 26(1), 157–170. http://doi.org/10.1364/AO.26.000157
Campbell, F. W., & Kulikowski, J. J. (1972). The visual evoked potential as a function of contrast of a grating pattern. The Journal of Physiology, 222(2), 345–356. http://doi.org/10.1113/jphysiol.1972.sp009801
Campbell, F. W., Kulikowski, J. J., & Levinson, J. (1966). The effect of orientation on the visual resolution of gratings. The Journal of Physiology, 187(2), 427–436. http://doi.org/10.1113/jphysiol.1966.sp008100
Campbell, F. W., Maffei, L., & Piccolino, M. (1973). The contrast sensitivity of the cat. The Journal of Physiology, 229(3), 719–731. http://doi.org/10.1113/jphysiol.1973.sp010163
Campbell, F. W., & Robson, J. G. (1968). Application of fourier analysis to the visibility of gratings. The Journal of Physiology, 197(3), 551–566. http://doi.org/10.1113/jphysiol.1968.sp008574
Cannon, M. W., & Fullenkamp, S. C. (1988). Perceived contrast and stimulus size: Experiment and simulation. Vision Research, 28(6), 695–709.
Carandini, M., Demb, J. B., Mante, V., Tolhurst, D. J., Dan, Y., Olshausen, B. A., … Rust, N. C. (2005). Do we know what the early visual system does? The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 25(46), 10577–10597. http://doi.org/10.1523/JNEUROSCI.3726-05.2005
Carandini, M., & Heeger, D. J. (1994). Summation and division by neurons in primate visual cortex. Science, 264(5163), 1333–1336. http://doi.org/10.1126/science.8191289
Carandini, M., Heeger, D. J., & Movshon, J. A. (1997). Linearity and normalization in simple cells of the macaque primary visual cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 17(21), 8621–8644.
Cass, J., Alais, D., Spehar, B., & Bex, P. J. (2009). Temporal whitening: Transient noise perceptually equalizes the 1/f temporal amplitude spectrum. Journal of Vision, 9(10), 12.1–19. http://doi.org/10.1167/9.10.12
Cass, J., Stuit, S., Bex, P., & Alais, D. (2009). Orientation bandwidths are invariant across spatiotemporal frequency after isotropic components are removed. Journal of Vision, 9(12), 1–14. http://doi.org/10.1167/9.12.17
Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002). Nature and Interaction of Signals From the Receptive Field Center and Surround in Macaque V1 Neurons. Journal of Neurophysiology, 88(5), 2530–2546. http://doi.org/10.1152/jn.00692.2001
Caywood, M. S., Willmore, B., & Tolhurst, D. J. (2004). Independent components of color natural scenes resemble V1 neurons in their spatial and color tuning. Journal of Neurophysiology, 91(6), 2859–2873. http://doi.org/10.1152/jn.00775.2003
Chaieb, L., Antal, A., & Paulus, W. (2008). Gender-specific modulation of short-term neuroplasticity in the visual cortex induced by transcranial direct current stimulation. Visual Neuroscience, 25(1), 77–81. http://doi.org/10.1017/S0952523808080097
Chatrian, G. E., Lettich, E., & Nelson, P. L. (1985). Ten Percent Electrode System for Topographic Studies of Spontaneous and Evoked EEG Activities. American Journal of EEG Technology, 25(2), 83–92. http://doi.org/10.1080/00029238.1985.11080163
Chubb, C., Sperling, G., & Solomon, J. A. a. (1989). Texture interactions determine perceived contrast. Proceedings of the National Academy of Sciences, 86(23), 9631–9635. http://doi.org/10.1073/pnas.87.3.1257b
Clifford, C. W. G., Webster, M. a., Stanley, G. B., Stocker, A. a., Kohn, A., Sharpee, T. O., & Schwartz, O. (2007). Visual adaptation: Neural, psychological and computational aspects. Vision Research, 47(25), 3125–3131. http://doi.org/10.1016/j.visres.2007.08.023
Coen-Cagli, R., & Schwartz, O. (2013). The impact on midlevel vision of statistically optimal divisive normalization in V1. Journal of Vision, 13(8), 1–20. http://doi.org/10.1167/13.8.13
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New Jersey: Lawrence Erlbaum Associates.
Costa, T. L., Gualtieri, M., Barboni, M. T. S., Katayama, R. K., Boggio, P. S., & Ventura, D. F. (2015). Contrasting effects of transcranial direct current stimulation on central and peripheral visual fields. Experimental Brain Research, 1391–1397. http://doi.org/10.1007/s00221-015-4213-0
Creutzfeldt, O. D., Fromm, G. H., & Kapp, H. (1962). Influence of transcortical d-c currents on cortical neuronal activity. Experimental Neurology, 5, 436–452. http://doi.org/10.1016/0014-4886(62)90056-0
Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educational and Psychological Measurement, 61(4), 532–574. http://doi.org/10.1177/0013164401614002
Dan, Y., Atick, J. J., & Reid, R. C. (1996). Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 16(10), 3351–62.
Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201–7, 207.e1. http://doi.org/10.1016/j.brs.2009.03.005
David, S. V, Vinje, W. E., & Gallant, J. L. (2004). Natural stimulus statistics alter the receptive field structure of v1 neurons. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 24(31), 6991–7006. http://doi.org/10.1523/JNEUROSCI.1422-04.2004
De Polavieja, G. G. (2002). Errors Drive the Evolution of Biological Signalling to Costly Codes. Journal of Theoretical Biology, 214(4), 657–664. http://doi.org/10.1006/jtbi.2001.2498
De Valois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque visual cortex. Vision Research, 22(5), 545–559. http://doi.org/10.1016/0042-6989(82)90113-4
De Valois, R. L., Morgan, H., & Snodderly, D. M. (1974). Psychophysical studies of monkey vision - III. Spatial luminance contrast sensitivity tests of macaque and human observers. VIsion Research, 14(1), 75–81. http://doi.org/10.1016/0042-6989(74)90118-7
DeAngelis, G. C., Robson, J. G., Ohzawa, I., & Freeman, R. D. (1992). Organization of suppression in receptive fields of neurons in cat visual cortex. Journal of Neurophysiology, 68(1), 144–163. http://doi.org/1517820
Doi, E., Inui, T., Lee, T.-W., Wachtler, T., & Sejnowski, T. J. (2003). Spatiochromatic receptive field properties derived from information-theoretic analyses of cone mosaic responses to natural scenes. Neural Computation, 15(2), 397–417. http://doi.org/10.1162/089976603762552960
Doi, E., & Lewicki, M. M. S. (2005). Relations between the statistical regularities of natural images and the response properties of the early visual system. Japanese Cognitive Science Society, SIG P&P, (1), 1–8.
Dorais, A., & Sagi, D. (1997). Contrast masking effects change with practice. Vision Research, 37(13), 1725–1733. http://doi.org/10.1016/S0042-6989(96)00329-X
Duecker, F., & Sack, A. T. (2015). Rethinking the role of sham TMS. Frontiers in Psychology, 6(February), 1–5. http://doi.org/10.3389/fpsyg.2015.00210
Edden, R. A. E., Muthukumaraswamy, S. D., Freeman, T. C. a, & Singh, K. D. (2009). Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. The Journal of Neuroscience, 29(50), 15721–15726. http://doi.org/10.1523/JNEUROSCI.4426-09.2009
Edwards, D., Cortes, M., Datta, A., Minhas, P., Wassermann, E. M., & Bikson, M. (2013). Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. NeuroImage, 74, 266–275. http://doi.org/10.1016/j.neuroimage.2013.01.042
Ellemberg, D., Allen, H. a., & Hess, R. F. (2006). Second-order spatial frequency and orientation channels in human vision. Vision Research, 46(17), 2798–2803. http://doi.org/10.1016/j.visres.2006.01.028
Ellemberg, D., Hammarrenger, B., Lepore, F., Roy, M.-S., & Guillemot, J.-P. (2001). Contrast dependency of VEPs as a function of spatial frequency: the parvocellular and magnocellular contributions to human VEPs. Spatial Vision, 15(1), 99–111. http://doi.org/10.1163/15685680152692042
Ellemberg, D., Hansen, B. C., & Johnson, A. (2012). The developing visual system is not optimally sensitive to the spatial statistics of natural images. Vision Research, 67, 1–7. http://doi.org/10.1016/j.visres.2012.06.018
Ellemberg, D., Wilkinson, F., Wilson, H. R., & Arsenault, A. S. (1998). Apparent contrast and spatial frequency of local texture elements. Journal of the Optical Society of America A, 15(7), 1733–1739. http://doi.org/10.1364/JOSAA.15.001733
Elliott, S. L., Georgeson, M. A., & Webster, M. A. (2011). Response normalization and blur adaptation: Data and multi-scale model. Journal of Vision, 11(2), 1–18. http://doi.org/10.1167/11.2.7.
Engel, S. A., Glover, G. H., & Wandell, B. A. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex, 7(2), 181–192. http://doi.org/10.1093/cercor/7.2.181
Enroth-Cugell, C., & Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. The Journal of Physiology, 187, 517–552. http://doi.org/10.1113/jphysiol.1966.sp008107
Ferster, D., & Miller, K. D. K. (2000). Neuron mechanisms of orientation selectivity in the visual cortex. Annual Review of Neuroscience, 23, 441–471. http://doi.org/10.1146/annurev.neuro.23.1.441
Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America A, 4(12), 2379–2394. http://doi.org/10.1364/JOSAA.4.002379
Field, D. J. (1989). What the statistics of natural images tell us about visual coding, 1, 269–276. http://doi.org/10.1117/12.952724
Field, D. J. (1994). What Is the Goal of Sensory Coding? Neural Computation, 6(4), 559–601. http://doi.org/10.1162/neco.1994.6.4.559
Field, D. J., & Brady, N. (1997). Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes. Vision Research, 37(23), 3367–3383. http://doi.org/10.1016/S0042-6989(97)00181-8
Fitzpatrick, D. (2000). Seeing beyond the receptive field in primary visual cortex. Current Opinion in Neurobiology, 10(4), 438–443. http://doi.org/10.1016/S0959-4388(00)00113-6
Foley, J. M. (1994). Human luminance pattern-vision mechanisms: masking experiments require a new model. Journal of the Optical Society of America A, 11(6), 1710–1719. http://doi.org/10.1364/JOSAA.11.001710
Foley, J. M., & Legge, G. E. (1981). Contrast detection and near-threshold discrimination in human vision. Vision Research, 21(7), 1041–1053. http://doi.org/10.1016/0042-6989(81)90009-2
Foster, K. H., Gaska, J. P., Nagler, M., & Pollen, D. A. (1985). Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. The Journal of Physiology, 365(1), 331–363. http://doi.org/10.1113/jphysiol.1985.sp015776
Frazor, R. A., & Geisler, W. S. (2006). Local luminance and contrast in natural images. Vision Research, 46(10), 1585–1598. http://doi.org/10.1016/j.visres.2005.06.038
Gaspar, C. M., & Rousselet, G. a. (2009). How do amplitude spectra influence rapid animal detection? Vision Research, 49(24), 3001–12. http://doi.org/10.1016/j.visres.2009.09.021
Geisler, W. S. (2008). Visual perception and the statistical properties of natural scenes. Annual Review of Psychology, 59, 167–192. http://doi.org/10.1146/annurev.psych.58.110405.085632
Geisler, W. S., Najemnik, J., & Ing, A. D. (2009). Optimal stimulus encoders for natural tasks. Journal of Vision, 9(13), 1–16. http://doi.org/10.1167/9.13.17
Goddard, E., Clifford, C. W. G., & Solomon, S. G. (2008). Centre-surround effects on perceived orientation in complex images. Vision Research, 48(12), 1374–82. http://doi.org/10.1016/j.visres.2008.02.023
Goffaux, V., Jacques, C., Mouraux, A., Oliva, A., Schyns, P. G. P., Rossion, B., … Rossion, B. (2005). Diagnostic colours contribute to the early stages of scene categorization : Behavioural and neurophysiological evidence. Visual Cognition, 12(6), 878–892. http://doi.org/10.1080/13506280444000562
Goris, R. L. T., Wichmann, F. A., & Henning, G. B. (2009). A neurophysiologically plausible population code model for human contrast discrimination. Journal of Vision, 9(7), 1–22. http://doi.org/10.1167/9.8.1004
Goris, R., Wichmann, F., & Henning, B. (2010). A neurophysiologically plausible population-code model for human contrast discrimination. Journal of Vision, 9(8), 1004–1004. http://doi.org/10.1167/9.8.1004
Gosselin, F., & Schyns, P. G. (2001). Bubbles: A technique to reveal the use of information in recognition tasks. Vision Research, 41(17), 2261–2271. http://doi.org/10.1016/S0042-6989(01)00097-9
Graham, D. J., Chandler, D. M., & Field, D. J. (2006). Can the theory of “whitening” explain the center-surround properties of retinal ganglion cell receptive fields? Vision Research, 46(18), 2901–2913. http://doi.org/10.1016/j.visres.2006.03.008
Graham, D. J., & Field, D. J. (2007). Efficient coding of natural images. New Encyclopedia of Neuroscience, 1.
Graham, D. J., Friedenberg, J. D., & Rockmore, D. N. (2009). Efficient visual system processing of spatial and luminance statistics in representational and non-representational art. Proceedings of SPIE, 7240, 72401N–72401N–12. http://doi.org/10.1117/12.817185
Graham, N., & Nachmias, J. (1971). Detection of grating patterns containing two spatial frequencies: A comparison of single-channel and multiple-channels models. Vision Research, 11(3), 251–259. http://doi.org/10.1016/0042-6989(71)90189-1
Graham, N., & Sutter, A. (1998). Spatial summation in simple (fourier) and complex (non-fourier) texture channels. Vision Research, 38(2), 231–257. http://doi.org/10.1016/S0042-6989(97)00154-5
Graham, N. V. (1989). Visual Pattern Analyzers. New York, NY: Oxford University Press.
Graham, N. V. (2011). Beyond multiple pattern analyzers modeled as linear filters (as classical V1 simple cells): useful additions of the last 25 years. Vision Research, 51(13), 1397–430. http://doi.org/10.1016/j.visres.2011.02.007
Graham, N. V., Robson, J. G., & Nachmias, J. (1978). Grating summation in fovea and periphery. Vision Research, 18(7), 815–25. http://doi.org/10.1016/0042-6989(78)90122-0
Graham, N. V., & Sutter, A. (2000). Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision. Vision Research, 40(20), 2737–61. http://doi.org/10.1016/S0042-6989(00)00123-1
Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27, 649–677. http://doi.org/10.1146/annurev.neuro.27.070203.144220
Gurnsey, R., & Fleet, D. J. (2001). Texture space. Vision Research, 41(6), 745–757. http://doi.org/10.1016/S0042-6989(00)00307-2
Guyader, N., Chauvin, A., Peyrin, C., Hérault, J., & Marendaz, C. (2004). Image phase or amplitude? Rapid scene categorization is an amplitude-based process. Comptes Rendus Biologies, 327(4), 313–318. http://doi.org/10.1016/j.crvi.2004.02.006
Hancock, P., Baddeley, R., & Smith, L. (1992). The principal components of natural images. Network: Computation in Neural Systems, 3, 61–70. http://doi.org/10.1088/0954-898X/3/1/008
Hansen, B. C., Ellemberg, D., & Johnson, A. P. (2012). Different spatial frequency bands selectively signal for natural image statistics in the early visual system. Journal of Neurophysiology, 108(8), 2160–2172. http://doi.org/10.1152/jn.00288.2012
Hansen, B. C., & Essock, E. A. (2005). Influence of scale and orientation on the visual perception of natural scenes. Visual Cognition, 12(6), 1199–1234. http://doi.org/10.1080/13506280444000715
Hansen, B. C., Essock, E. A., Zheng, Y., & DeFord, J. K. (2003). Perceptual anisotropies in visual processing and their relation to natural image statistics. Network: Computation in Neural Systems, 14(3), 501–526. http://doi.org/10.1088/0954-898X_14_3_307
Hansen, B. C., Farivar, R., Thompson, B., & Hess, R. F. (2008). A critical band of phase alignment for discrimination but not recognition of human faces. Vision Research, 48(25), 2523–2536. http://doi.org/10.1016/j.visres.2008.08.016
Hansen, B. C., Haun, A. M., & Essock, E. A. (2008). The horizontal effect: A perceptual anisotropy in visual processing of naturalistic broadband stimuli. In Visual Cortex: New Research (pp. 1–34).
Hansen, B. C., & Hess, R. F. (2006). Discrimination of amplitude spectrum slope in the fovea and parafovea and the local amplitude distributions of natural scene imagery. Journal of Vision, 6(7), 696–711. http://doi.org/10.1167/6.7.3
Hansen, B. C., & Hess, R. F. (2007). Structural sparseness and spatial phase alignment in natural scenes. Journal of the Optical Society of America A, 24(7), 1873–1885. http://doi.org/10.1364/JOSAA.24.001873
Hansen, B. C., & Hess, R. F. (2012). On the Effectiveness of Noise Masks: Naturalistic vs. Un-naturalistic Image Statistics. Vision Research, 60, 101–113. http://doi.org/10.1016/j.visres.2012.03.017
Hansen, B. C., Jacques, T., Johnson, A. P., & Ellemberg, D. (2011). From spatial frequency contrast to edge preponderance: the differential modulation of early visual evoked potentials by natural scene stimuli. Visual Neuroscience, 28(3), 221–37. http://doi.org/10.1017/S095252381100006X
Hansen, B. C., & Loschky, L. C. (2013). The contribution of amplitude and phase spectra-defined scene statistics to the masking of rapid scene categorization. Journal of Vision, 13(13), 1–21. http://doi.org/10.1167/13.13.21
Hansen, B. C., Richard, B., Andres, K., Johnson, A. P., Thompson, B., & Essock, E. A. (2015). A cortical locus for anisotropic overlay suppression of stimuli presented at fixation. Visual Neuroscience, 32, E023. http://doi.org/10.1017/S0952523815000255
Haun, A. M., & Essock, E. A. (2010). Contrast sensitivity for oriented patterns in 1/f noise: contrast response and the horizontal effect. Journal of Vision, 10, 1–21. http://doi.org/10.1167/10.10.1
Haun, A. M., & Peli, E. (2013). Perceived contrast in complex images. Journal of Vision, 13(3), 1–21. http://doi.org/10.1167/13.13.3
Haynes, J. D., Roth, G., Stadler, M., & Heinze, H. J. (2003). Neuromagnetic correlates of perceived contrast in primary visual cortex. Journal of Neurophysiology, 89(5), 2655–2666. http://doi.org/10.1152/jn.00820.2002
Heeger, D. J. D. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9(02), 181. http://doi.org/10.1017/S0952523800009640
Henning, G. B., Hertz, B. G., & Broadbent, D. E. (1974). Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency. Vision Research, 15, 887–897. http://doi.org/10.1016/0042-6989(75)90228-X
Henriksson, L., Nurminen, L., Hyvärinen, A., & Vanni, S. (2008). Spatial frequency tuning in human retinotopic visual areas. Journal of Vision, 8(10), 1–13. http://doi.org/10.1167/8.10.5
Hoekstra, J., van der Goot, D. P. J., van den Brink, G., & Bilsen, F. A. (1974). The influence of the number of cycles upon the visual contrast threshold for sptial sine wave patterns. Vision Research, 14(6), 365–368. http://doi.org/10.1016/0042-6989(74)90234-X
Horton, J. C. (2006). Ocular integration in the human visual cortex. Canadian Journal of Ophthalmology. Journal Canadien D’ophtalmologie, 41(415), 584–593. http://doi.org/10.1016/S0008-4182(06)80027-X
Huang, W., Jiao, L., & Jia, J. (2008). Modeling contextual modulation in the primary visual cortex. Neural Networks : The Official Journal of the International Neural Network Society, 21(8), 1182–1196. http://doi.org/10.1016/j.neunet.2008.06.001
Hutchinson, C. V., & Ledgeway, T. (2010). Spatial summation of first-order and second-order motion in human vision. Vision Research, 50(17), 1766–1774. http://doi.org/10.1016/j.visres.2010.05.032
Hyvärinen, A., Hoyer, P. O., Hurri, J., & Gutmann, M. (2005). Statistical models of images and early vision. In Proceedings of the Int. Symposium on Adaptive Knowledge Representation and Reasoning (AKRR2005) (pp. 1–14). Citeseer.
Hyvärinen, A., Hurri, J., & Hoyer, P. O. (2009). Natural Image Statistics: A Probabilistic Approach to Early Computational Vision. London: Springer.
Issa, N. P., Trepel, C., & Stryker, M. P. (2000). Spatial frequency maps in cat visual cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 20(22), 8504–14.
Jacobson, L., Koslowsky, M., & Lavidor, M. (2012). TDCS polarity effects in motor and cognitive domains: A meta-analytical review. Experimental Brain Research, 216(1), 1–10. http://doi.org/10.1007/s00221-011-2891-9
Jäkel, F., & Wichmann, F. A. (2006). Spatial four-alternative forced-choice method is the preferred psychophysical method for naïve observers. Journal of Vision, 6(11), 1307–1322. http://doi.org/10.1167/6.11.13
Johnson, A. P., & Baker, C. L. (2004). First- and second-order information in natural images: a filter-based approach to image statistics. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 21(6), 913–25. http://doi.org/10.1364/JOSAA.21.000913
Johnson, A. P., Kingdom, F. A. A., & Baker, C. L. (2005). Spatiochromatic statistics of natural scenes: first- and second-order information and their correlational structure. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 22(10), 2050–2059. http://doi.org/10.1364/JOSAA.22.002050
Johnson, A. P., Prins, N., Kingdom, F. A. A., & Baker, C. L. (2007). Ecologically valid combinations of first- and second-order surface markings facilitate texture discrimination. Vision Research, 47(17), 2281–2290. http://doi.org/10.1016/j.visres.2007.05.003
Johnson, A. P., Richard, B., Hansen, B. C., & Ellemberg, D. (2011). The magnitude of center – surround facilitation in the discrimination of amplitude spectrum is dependent on the amplitude of the surround. Journal of Vision, 11((7):14), 1–10. http://doi.org/10.1167/11.7.14
Kaernbach, C. (1991). Simple adaptive testing with the weighted up-down method. Perception & Psychophysics, 49(3), 227–229. http://doi.org/10.3758/BF03214307
Katzner, S., Busse, L., & Carandini, M. (2011). GABAA inhibition controls response gain in visual cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(16), 5931–5941. http://doi.org/10.1523/JNEUROSCI.5753-10.2011
Kayser, C., Salazar, R. F., & Konig, P. (2003). Responses to natural scenes in cat V1. Journal of Neurophysiology, 90(3), 1910–1920. http://doi.org/10.1152/jn.00195.2003
Kelly, D. H. (1975). Spatial frequency selectivity in the retina. Vision Research, 15(6), 665–672. http://doi.org/10.1016/0042-6989(75)90282-5
Kersten, D. (1987). Statistical efficiency for the detection of visual noise. Vision Reseach, 27(6), 1029–1040. http://doi.org/10.1016/0042-6989(87)90016-2
Kim, T., Allen, E. A., Pasley, B. N., & Freeman, R. D. (2015). Transcranial Magnetic Stimulation Changes Response Selectivity of Neurons in the Visual Cortex. Brain Stimulation, (March), 1–11. http://doi.org/10.1016/j.brs.2015.01.407
Kim, Y. J., Haun, A. M., & Essock, E. A. (2010). The horizontal effect in suppression: Anisotropic overlay and surround suppression at high and low speeds. Vision Research, 50(9), 838–849. http://doi.org/10.1016/j.visres.2010.01.020
Kingdom, F. A. A., & Prins, N. (2010). Psychophysics: a practical introduction (1st ed.). London: Elsevier.
Klein, S. A., & Levi, D. M. (2009). Stochastic model for detection of signals in noise. Journal of the Optical Society America, A, 26(11), 110–126. http://doi.org/10.1364/JOSAA.26.00B110
Kleiner, M., Brainard, D. H., Pelli, D. G., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3? In Perception (Vol. 36).
Kline, R. B. (2004). Beyond Significance Testing: Reforming Data Analysis Methods in Behavioral Research. Washington, DC: American Psychological Association.
Knill, D. C., Field, D. J., & Kersten, D. (1990). Human discrimination of fractal images. Journal of the Optical Society of America. A, Optics and Image Science, 7(6), 1113–1123. http://doi.org/10.1364/JOSAA.7.001113
Kohn, A. (2007). Visual adaptation: physiology, mechanisms, and functional benefits. Journal of Neurophysiology, 97(5), 3155–3164. http://doi.org/10.1152/jn.00086.2007
Kontsevich, L. L., & Tyler, C. W. (2004). What makes Mona Lisa smile? Vision Research, 44(13), 1493–1498. http://doi.org/10.1016/j.visres.2003.11.027
Kraft, A., Roehmel, J., Olma, M. C., Schmidt, S., Irlbacher, K., & Brandt, S. A. (2010). Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 207(3-4), 283–290. http://doi.org/10.1007/s00221-010-2453-6
Kretzmer, E. R. (1952). Statistics of Television Signals. Bell System Technical Journal, 31(4), 751–763. http://doi.org/10.1002/j.1538-7305.1952.tb01404.x
Kuo, H.-I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M.-F., & Nitsche, M. A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain Stimulation, 6(4), 644–648. http://doi.org/10.1016/j.brs.2012.09.010
Kwon, M., & Legge, G. E. (2011). Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision. Vision Research, 51(18), 1995–2007. http://doi.org/10.1016/j.visres.2011.06.020
Kwon, Y. H., Nelson, S. B., Toth, L. J., & Sur, M. (1992). Effect of stimulus contrast and size on NMDA receptor activity in cat lateral geniculate nucleus. Journal of Neurophysiology, 68(1), 182–196.
Lang, N., Siebner, H. R., Chadaide, Z., Boros, K., Nitsche, M. A., Rothwell, J. C., … Antal, A. (2007). Bidirectional modulation of primary visual cortex excitability: A combined tDCS and rTMS study. Investigative Ophthalmology and Visual Science, 48(12), 5782–5787. http://doi.org/10.1167/iovs.07-0706
Laughlin, S. B. (1987). Form and function in retinal processing. Trends in Neurosciences, 10(11), 478–483. http://doi.org/10.1016/0166-2236(87)90104-4
Lee, A. B., Mumford, D., & Huang, J. (2012). Occlusion Models for Natural Images : A Statistical Study of a Scale-Invariant Dead Leaves Model. International Journal of Computer Vision, 41(1-2), 35–39. http://doi.org/10.1023/A:1011109015675
Legge, G. E. (1978). Space domain properties of a spatial frequency channel in human vision. Vision Research, 18(8), 959–969. http://doi.org/10.1016/0042-6989(78)90024-X
Legge, G. E., & Foley, J. M. (1980). Contrast masking in human vision. JOSA, 70(12), 1458. http://doi.org/10.1364/JOSA.70.001458
Levi, D. M., Klein, S. a., & Chen, I. (2005). What is the signal in noise? Vision Research, 45(14), 1835–1846. http://doi.org/10.1016/j.visres.2005.01.020
Levi, D. M., Klein, S. A., & Chen, I. (2008). What limits performance in the amblyopic visual system: seeing signals in noise with an amblyopic brain. Journal of Vision, 8(4), 1–23. http://doi.org/10.1167/8.4.1
Li, B., Peterson, M. R., & Freeman, R. D. (2003). Oblique effect: a neural basis in the visual cortex. Journal of Neurophysiology, 90(1), 204–217. http://doi.org/10.1152/jn.00954.2002
Li, G., Yang, Y., Liang, Z., Xia, J., Yang, Y., & Zhou, Y. (2008). GABA-mediated inhibition correlates with orientation selectivity in primary visual cortex of cat. Neuroscience, 155(3), 914–922. http://doi.org/10.1016/j.neuroscience.2008.06.032
Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through video game training. Nature Neuroscience, 12(5), 549–551. http://doi.org/10.1038/nn.2296
Linares, D., Motoyoshi, I., & Nishida, S. (2012). Surround facilitation for rapid motion perception. Journal of Vision, 12(10), 1–10. http://doi.org/10.1167/12.10.3
Lörincz, A., Palotai, Z., & Szirtes, G. (2012). Efficient sparse coding in early sensory processing: lessons from signal recovery. PLoS Computational Biology, 8(3), e1002372. http://doi.org/10.1371/journal.pcbi.1002372
Loschky, L. C., Hansen, B. C., Sethi, A., & Pydimarri, T. N. (2010). The role of higher order image statistics in masking scene gist recognition. Attention, Perception, & Psychophysics, 72(2), 427–444. http://doi.org/10.3758/APP.72.2.427
Maehara, G., & Goryo, K. (2007). Perceptual learning in monocular pattern masking: experiments and explanations by the twin summation gain control model of contrast processing. Perception & Psychophysics, 69(6), 1009–1021. http://doi.org/10.3758/BF03193939
Maffei, L., & Fiorentini, A. (1973). The visual cortex as a spatial frequency analyser. Vision Research, 13(7), 1255–1267. http://doi.org/10.1016/0042-6989(73)90201-0
Maldonado, P. E., & Babul, C. M. (2007). Neuronal activity in the primary visual cortex of the cat freely viewing natural images. Neuroscience, 144(4), 1536–1543. http://doi.org/10.1016/j.neuroscience.2006.11.021
Mareschal, I., Sceniak, M. P., & Shapley, R. M. (2001). Contextual influences on orientation discrimination: Binding local and global cues. Vision Research, 41(15), 1915–1930. http://doi.org/10.1016/S0042-6989(01)00082-7
McDonald, J. S., & Tadmor, Y. (2006). The perceived contrast of texture patches embedded in natural images. Vision Research, 46(19), 3098–3104. http://doi.org/10.1016/j.visres.2006.04.014
Medeiros, L. F., de Souza, I. C. C., Vidor, L. P., de Souza, A., Deitos, A., Volz, M. S., … Torres, I. L. S. (2012). Neurobiological effects of transcranial direct current stimulation: A review. Frontiers in Psychiatry, 3(DEC), 1–11. http://doi.org/10.3389/fpsyt.2012.00110
Meese, T. S. (2004). Area summation and masking. Journal of Vision, 4(10), 930–943. http://doi.org/10.1167/4.10.8
Meese, T. S., & Baker, D. H. (2011). Contrast summation across eyes and space is revealed along the entire dipper function by a “ Swiss cheese ” stimulus. Journal of Vision, 11(1), 1–23. http://doi.org/10.1167/11.1.23
Meese, T. S., & Baker, D. H. (2013). A common rule for integration and suppression of luminance contrast across eyes, space, time, and pattern. I-Perception, 4(1), 1–16. http://doi.org/10.1068/i0556
Meese, T. S., & Hess, R. F. (2004). Low spatial frequencies are suppressively masked across spatial scale, orientation, field position, and eye of origin. Journal of Vision, 4, 843–859. http://doi.org/10.1167/4.10.2
Meese, T. S., & Holmes, D. J. (2007). Spatial and temporal dependencies of cross-orientation suppression in human vision. Proceedings. Biological Sciences / The Royal Society, 274(1606), 127–136. http://doi.org/10.1098/rspb.2006.3697
Meese, T. S., & Holmes, D. J. (2010). Orientation masking and cross-orientation suppression (XOS): implications for estimates of filter bandwidth. Journal of Vision, 10(12), 1–20. http://doi.org/10.1167/10.12.9
Meese, T. S., & Summers, R. J. (2007). Area summation in human vision at and above detection threshold. Proceedings. Biological Sciences / The Royal Society, 274(1653), 2891–900. http://doi.org/10.1098/rspb.2008.3002
Meese, T. S., Summers, R. J., & Baldwin, a. (2012). Theory and data for area summation of contrast with and without uncertainty : Evidence for a noisy energy model. Journal of Vision, 12(11), 1–28. http://doi.org/10.1167/12.11.9
Meese, T. S., Summers, R. J., Holmes, D. J., & Wallis, S. A. (2007). Contextual modulation involves suppression and facilitation from the center and the surround. Journal of Vision, 7(4), 1–21. http://doi.org/10.1167/7.4.7
Minhas, P., Datta, A., & Bikson, M. (2011). Cutaneous perception during tDCS: Role of electrode shape and sponge salinity. Clinical Neurophysiology, 122(4), 637–638. http://doi.org/10.1016/j.clinph.2010.09.023
Miranda, P. C., Lomarev, M., & Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clinical Neurophysiology, 117(7), 1623–1629. http://doi.org/10.1016/j.clinph.2006.04.009
Miranda, P. C., Mekonnen, A., Salvador, R., & Ruffini, G. (2013). The electric field in the cortex during transcranial current stimulation. NeuroImage, 70, 48–58. http://doi.org/10.1016/j.neuroimage.2012.12.034
Morgan, M. J., & Watt, R. J. (1997). The combination of filters in early spatial vision: a retrospective analysis of the MIRAGE model. Perception, 26(9), 1073–1088. http://doi.org/10.1068/p261073
Morrison, D. J., & Schyns, P. G. (2001). Usage of spatial scales for the categorization of faces, objects, and scenes. Psychonomic Bulletin & Review, 8(3), 454–469. http://doi.org/10.3758/BF03196180
Morrone, M. C., Burr, D. C., & Maffei, L. (1982). Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. Royal Society (Great Britain), 216(1204), 335–354. http://doi.org/10.1098/rspb.1982.0078
Movshon, J. a, Thompson, I. D., & Tolhurst, D. J. (1978). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex. The Journal of Physiology, 283(1), 101–120. http://doi.org/10.1113/jphysiol.1978.sp012490
Movshon, J. A. J. a, Thompson, I. D., & Tolhurst, D. J. (1978). Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. The Journal of Physiology, 283(1), 53–77. http://doi.org/10.1113/jphysiol.1978.sp012488
Murray, R. F., Bennett, P. J., & Sekuler, A. B. (2005). Classification images predict absolute efficiency. Journal of Vision, 5(2), 139–149. http://doi.org/10.1167/5.2.5
Murray, S., & Bex, P. J. (2010). Perceived blur in naturally contoured images depends on phase. Frontiers in Psychology, 1(December), 185. http://doi.org/10.3389/fpsyg.2010.00185
Nestares, O., & Heeger, D. J. (1997). Modeling the Apparent Frequency-specific Suppression in Simple Cell Responses. Vision Research, 37(11), 1535–1543. http://doi.org/10.1016/S0042-6989(96)00268-4
Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. http://doi.org/10.1016/j.brs.2008.06.004
Nitsche, M. A., Doemkes, S., Karaköse, T., Antal, A., Liebetanz, D., Lang, N., … Paulus, W. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 97(January 2007), 3109–3117. http://doi.org/10.1152/jn.01312.2006
Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., … Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of Physiology, 553(Pt 1), 293–301. http://doi.org/10.1113/jphysiol.2003.049916
Nitsche, M. A., Liebetanz, D., Lang, N., Antal, A., Tergau, F., Paulus, W., & Priori, A. (2003). Safety criteria for transcranial direct current stimulation (tDCS) in humans [1] (multiple letters). Clinical Neurophysiology, 114(11), 2220–2222. http://doi.org/10.1016/S1388-2457(03)00235-9
Nitsche, M. A., Nitsche, M. S., Klein, C. C., Tergau, F., Rothwell, J. C., & Paulus, W. (2003). Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 114(4), 600–604. http://doi.org/10.1016/S1388-2457(02)00412-1
Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–639. http://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x
Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 107(1), 72–107. http://doi.org/10.1006/cogp.1997.0667
Oliva, A., & Schyns, P. G. (2000). Diagnostic colors mediate scene recognition. Cognitive Psychology, 41(2), 176–210. http://doi.org/10.1006/cogp.1999.0728
Oliva, A., & Torralba, A. (2001). Modelling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3), 145–175. http://doi.org/10.1023/A:1011139631724
Olma, M. C., Kraft, A., Roehmel, J., Irlbacher, K., & Brandt, S. A. (2011). Excitability changes in the visual cortex quantified with signal detection analysis. Restorative Neurology and Neuroscience, 29, 453–461. http://doi.org/10.3233/RNN-2011-0607
Olman, C. A., Ugurbil, K., Schrater, P., & Kersten, D. (2004). BOLD fMRI and psychophysical measurements of contrast response to broadband images. Vision Research, 44(7), 669–683. http://doi.org/10.1016/j.visres.2003.10.022
Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609. http://doi.org/10.1038/381607a0
Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37(23), 3311–3325. http://doi.org/10.1016/S0042-6989(97)00169-7
Olshausen, B. a., & Field, D. J. (2000). Vision and the coding of natural images. American Scientist, 88(3), 238–245. http://doi.org/10.1511/2000.3.238
Olshausen, B. A., & Field, D. J. (2005). How close are we to understanding V1? Neural Computation, 17(8), 1665–1699. http://doi.org/10.1162/0899766054026639
Olshausen, B. A., & Lewicki, M. (2013). What Natural Scene Statistics Can Tell Us about Cortical Representation. In L. M. Chalupa & J. S. Werner (Eds.), The New Visual Neurosciences (pp. 1247–1262). Boston: The MIT Press.
Olshausen, B., & Field, D. J. (1996). Natural image statistics and efficient coding. Network: Computation in Neural Systems, 7(2), 333–339. http://doi.org/10.1088/0954-898X/7/2/014
Olzak, L. A., & Thomas, J. P. (1999). Neural recoding in human pattern vision: Model and mechanisms. Vision Research, 39(June 1996), 231–256. http://doi.org/10.1016/S0042-6989(98)00122-9
Osaki, H., Naito, T., Sadakane, O., Okamoto, M., & Sato, H. (2011). Surround suppression by high spatial frequency stimuli in the cat primary visual cortex. The European Journal of Neuroscience, 33(5), 923–932. http://doi.org/10.1111/j.1460-9568.2010.07572.x
Párraga, C. A., Troscianko, T., Tolhurst, D. J. (2005). The effects of amplitude-spectrum statistics on foveal and peripheral discrimination of changes in natural images, and a multi-resolution model. Vision Research, 45(25-26), 3145–68. http://doi.org/10.1016/j.visres.2005.08.006
Párraga, C. A., & Tolhurst, D. J. (2000). The effect of contrast randomisation on the discrimination of changes in the slopes of the amplitude spectra of natural scenes. Perception, 29(9), 1101–1116. http://doi.org/10.1068/p2904
Párraga, C. A., Troscianko, T., & Tolhurst, D. J. (2000). The human visual system is optimised for processing the spatial information in natural visual images. Current Biology, 10(c), 35–38. http://doi.org/10.1016/S0960-9822(99)00262-6
Paulus, W. (2011). Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation, 21(5), 602–617. http://doi.org/10.1080/09602011.2011.557292
Peli, E. (1990). Contrast in complex images. Journal of the Optical Society of America. A, Optics and Image Science, 7(10), 2032–2040. http://doi.org/10.1364/JOSAA.7.002032
Peli, E., Arend, L. E., Young, G. M., & Goldstein, R. B. (1993). Contrast sensitivity to patch stimuli: effects of spatial bandwidth and temporal presentation. Spatial Vision, 7(1), 1–14. http://doi.org/10.1163/156856893X00018
Pelli, D. G. (1985). Uncertainty explains many aspects of visual contrast detection and discrimination. Journal of the Optical Society of America A, 2(9), 1508. http://doi.org/10.1364/JOSAA.2.001508
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. http://doi.org/10.1163/156856897X00366
Pellicciari, M. C. M., Brignani, D., & Miniussi, C. (2013). Excitability modulation of the motor system induced by transcranial direct current stimulation: A multimodal approach. Neuroimage, 83, 569–580. http://doi.org/10.1016/j.neuroimage.2013.06.076
Perna, A., & Morrone, M. C. (2007). The lowest spatial frequency channel determines brightness perception. Vision Research, 47(10), 1282–1291. http://doi.org/10.1016/j.visres.2007.01.011
Peterchev, A. V., Wagner, T. A., Miranda, P. C., Nitsche, M. A., Paulus, W., Lisanby, S. H., … Bikson, M. (2012). Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimulation, 5(4), 435–453. http://doi.org/10.1016/j.brs.2011.10.001
Peters, M. A. K., Thompson, B., Merabet, L. B., Wu, A. D., & Shams, L. (2013). Anodal tDCS to V1 blocks visual perceptual learning consolidation. Neuropsychologia, 51(7), 1234–1239. http://doi.org/10.1016/j.neuropsychologia.2013.03.013
Petrov, Y., Carandini, M., & McKee, S. (2005). Two distinct mechanisms of suppression in human vision. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 25(38), 8704–8707. http://doi.org/10.1523/JNEUROSCI.2871-05.2005
Petrov, Y., & Mckee, S. P. (2006). The effect of spatial configuration on surround suppression of contrast sensitivity. Journal of Vision, 6, 224–238. http://doi.org/10.1167/6.3.4
Petrov, Y., Popple, A. V, & McKee, S. P. (2007). Crowding and surround suppression: not to be confused. Journal of Vision, 7(2), 1–9. http://doi.org/10.1167/7.2.12
Phillips, G. C., & Wilson, H. R. (1984). Orientation bandwidths of spatial mechanisms measured by masking. Journal of the Optical Society of America. A, Optics and Image Science, 1(2), 226–232. http://doi.org/10.1364/JOSAA.1.000226
Pirulli, C., Fertonani, A., & Miniussi, C. (2014). Is neural hyperpolarization by cathodal stimulation always detrimental at the behavioral level? Frontiers in Behavioral Neuroscience, 8(June), 226. http://doi.org/10.3389/fnbeh.2014.00226
Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. Vision Research, 33(7), 993–999. http://doi.org/10.1016/0042-6989(93)90081-7
Polat, U., & Sagi, D. (1994). The architecture of perceptual spatial interactions. Vision Research, 34(1), 73–78. http://doi.org/10.1016/0042-6989(94)90258-5
Poreisz, C., Boros, K., Antal, A., & Paulus, W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin, 72(4-6), 208–214. http://doi.org/10.1016/j.brainresbull.2007.01.004
Prenger, R., Wu, M. C.-K., David, S. V, & Gallant, J. L. (2004). Nonlinear V1 responses to natural scenes revealed by neural network analysis. Neural Networks : The Official Journal of the International Neural Network Society, 17(5-6), 663–679. http://doi.org/10.1016/j.neunet.2004.03.008
Prins, N., & Kingdom, F. A. A. (2009). Palamedes: Matlab routines for analyzing psychophysical data. Retrieved from http://www.palamedestoolbox.org/
Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in sub-and suprathreshold uniform electric field stimulation. Brain Stimulation, 2(4), 215–228. http://doi.org/10.1016/j.brs.2009.03.007
Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L. C., & Bikson, M. (2013). Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. The Journal of Physiology, 591(Pt 10), 2563–2578. http://doi.org/10.1113/jphysiol.2012.247171
Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. Journal of Neuroscience, 30(45), 15067–15079. http://doi.org/10.1523/JNEUROSCI.2059-10.2010
Ress, D., Backus, B. T., & Heeger, D. J. (2000). Activity in primary visual cortex predicts performance in a visual detection task. Nature Neuroscience, 3(9), 940–945. http://doi.org/10.1038/78856
Richard, B., Hansen, B. C., Ellemberg, D., & Johnson, A. P. (2013). Size dependent increase in sensitivity to the slope of the amplitude spectrum is not solely dependent on the increased low spatial frequency representation of larger stimuli [Abstract]. Journal of Vision, 13, 1238. http://doi.org/10.1167/13.9.1238
Richard, B., Johnson, A. P., Thompson, B., & Hansen, B. C. (2015). The effects of tDCS across the spatial frequencies and orientations that comprise the Contrast Sensitivity Function. Frontiers in Psychology: Perception Science, 6, 1784. http://doi.org/10.3389/fpsyg.2015.01784
Rieger, J. W., Gegenfurtner, K. R., Schalk, F., Koechy, N., Heinze, H., & Grueschow, M. (2013). BOLD responses in human V1 to local structure in natural scenes: Implications for theories of visual coding. Journal of Vision, 13(2), 1–15. http://doi.org/10.1167/13.2.19
Robson, J. G. (1966). Spatial and Temporal Contrast-Sensitivity Functions of the Visual System. Journal of the Optical Society of America, 56(8), 1141. http://doi.org/10.1364/JOSA.56.001141
Robson, J. G. J. G. J., & Graham, N. (1981). Probability summation and regional variation in contrast sensitivity across the visual field. Vision Research, 21(3), 409–418. http://doi.org/10.1016/0042-6989(81)90169-3
Rohaly, A. M., Ahumada Jr., A. J., Watson, A., B. (1997). Object detection in natural backgrounds predicted by discrimination performance and models. Vision Research, 37(23), 3225–3235. http://doi.org/10.1016/S0042-6989(97)00156-9
Rosa, M. G. P., Casagrande, V. A., Preuss, T., & Kaas, J. H. (1997). Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti). Journal of Neurophysiology, 77(6), 3193–3217.
Rosa, M. G. P., Fritsches, K. A., & Elston, G. N. (1997). The second visual area in the marmoset monkey: Visuotopic organisation, magnification factors, architectonical boundaries, and modularity. The Journal of Comparative Neurology, 387(4), 547–567. http://doi.org/10.1002/(SICI)1096-9861(19971103)387:4<547::AID-CNE6>3.0.CO;2-2
Rose, D., & Blakemore, C. (1974). Effects of bicuculline on functions of inhibition in visual cortex. Nature, 249(5455), 375–377. http://doi.org/10.1038/249375a0
Ross, J., & Speed, H. D. (1991). Contrast adaptation and contrast masking in human vision. Proceedings. Biological Sciences / The Royal Society, 246(1315), 61–69. http://doi.org/10.1098/rspb.1991.0125
Ruderman, D. L. (1994). The statistics of natural images. Network Computation in Neural Systems, 5(4), 517–548. http://doi.org/10.1088/0954-898X/5/4/006
Ruderman, D. L., Cronin, T. W., & Chiao, C.-C. (1998). Statistics of cone responses to natural images: implications for visual coding. Journal of the Optical Society of America A, 15(8), 2036–2045. http://doi.org/10.1364/JOSAA.15.002036
Ruderman, D. L., & Bialek, W. (1994). Statistics of natural images: Scaling in the woods. Physical Review Letters, 73(6), 814–817. http://doi.org/10.1103/PhysRevLett.73.814
Rushton, W. A. H. (1927). THe effect upon the threshold for nervous excitation of the length of nerve exposed, and the angle between current and nerve. The Journal of Physiology, 63(4), 357–377. http://doi.org/10.1113/jphysiol.1927.sp002409
Sachs, M. B., Nachmias, J., & Robson, J. G. (1971). Spatial-frequency channels in human vision. Journal of the Optical Society of America, 61(9), 1176–1186. http://doi.org/10.1364/JOSA.61.001176
Sadleir, R. J., Vannorsdall, T. D., Schretlen, D. J., & Gordon, B. (2010). Transcranial direct current stimulation (tDCS) in a realistic head model. NeuroImage, 51(4), 1310–1318. http://doi.org/10.1016/j.neuroimage.2010.03.052
Sagi, D., & Hochstein, S. (1985). Lateral inhibition between spatially adjacent spatial-frequency channels? Perception & Psychophysics, 37(4), 315–22. http://doi.org/10.3758/BF03211354
Schofield, A. J., & Georgeson, M. A. (2003). Sensitivity to contrast modulation: the spatial frequency dependence of second-order vision. Vision Research, 43(3), 243–259. http://doi.org/10.1016/S0042-6989(02)00542-4
Schofield, A. J., Rock, P. B., Sun, P., Jiang, X., & Georgeson, M. A. (2010). What is second-order vision for? Discriminating illumination versus material changes. Journal of Vision, 10(9), 1–18. http://doi.org/10.1167/10.9.2
Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics and sensory gain control. Nature Neuroscience, 4(8), 819–25. http://doi.org/10.1038/90526
Schyns, P. G., & Gosselin, F. (2003). Diagnostic use of scale information for componential and holistic recognition. Perception of Faces, Objects, and Scenes: Analytic and Holistic Processes, (514), 120–148. http://doi.org/10.1093/acprof:oso/9780195313659.003.0006
Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene recognition. Psychological Science, 5(4), 195–200. http://doi.org/10.1111/j.1467-9280.1994.tb00500.x
Schyns, P. G., & Oliva, A. (1999). Dr. Angry and Mr. Smile: when categorization flexibly modifies the perception of faces in rapid visual presentations. Cognition, 69(3), 243–265. http://doi.org/10.1016/S0010-0277(98)00069-9
Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. The Journal of Neuroscience, 18(10), 3870–3896.
Shipp, S. (2005). The importance of being agranular: a comparative account of visual and motor cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 797–814. http://doi.org/10.1098/rstb.2005.1630
Shipp, S. (2007). Structure and function of the cerebral cortex. Current Biology, 17(12), 443–449. http://doi.org/10.1016/j.cub.2007.03.044
Simoncelli, E. P. (2003). Vision and the statistics of the visual environment. Current Opinion in Neurobiology, 13(2), 144–149. http://doi.org/10.1016/S0959-4388(03)00047-3
Simoncelli, E. P. (2005). Statistical Modeling of Photographic Images. In A. Bovik (Ed.), Handbook of Video and Image Processing (2nd ed.). Academic Press.
Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24(1), 1193–1216. http://doi.org/10.1146/annurev.neuro.24.1.1193
Smith, J. O. I. (2007). Mathematics of the Discrete Fourier Transform ( DFT ).
Smyth, D., Willmore, B., Baker, G. E., Thompson, I. D., & Tolhurst, D. J. (2003). The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. The Journal of Neuroscience, 23(11), 4746–4759.
Snowden, R. J., & Hammett, S. T. (1998). The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination. Vision Research, 38(13), 1935–1945. http://doi.org/10.1016/S0042-6989(97)00379-9
Snyder, A. W., & Srinivasan, M. V. (1979). Human psychophysics: functional interpretation for contrast sensitivity versus spatial frequency curve. Biological Cybernetics, 32(1), 9–17. http://doi.org/10.1007/BF00337446
Sowden, P. T., Rose, D., & Davies, I. R. L. (2002). Perceptual learning of luminance contrast detection: Specific for spatial frequency and retinal location but not orientation. Vision Research, 42, 1249–1258. http://doi.org/10.1016/S0042-6989(02)00019-6
Spiegel, D. P., Byblow, W. D., Hess, R. F., & Thompson, B. (2013). Anodal transcranial direct current stimulation transiently improves contrast sensitivity and normalizes visual cortex activation in individuals with amblyopia. Neurorehabilitation and Neural Repair, 27(8), 760–9. http://doi.org/10.1177/1545968313491006
Spiegel, D. P., Hansen, B. C., Byblow, W. D., & Thompson, B. (2012). Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex. PloS One, 7(5), e36220. http://doi.org/10.1371/journal.pone.0036220
Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., … Johansen-Berg, H. (2009). Polarity-Sensitive Modulation of Cortical Neurotransmitters by Transcranial Stimulation. Journal of Neuroscience, 29(16), 5202–5206. http://doi.org/10.1523/JNEUROSCI.4432-08.2009
Stagg, C. J., & Nitsche, M. A. (2011). Physiological Basis of Transcranial Direct Current Stimulation. The Neuroscientist, 17(1), 37–53. http://doi.org/10.1177/1073858410386614
Stromeyer, C. F., & Julesz, B. (1972). Spatial-Frequency Masking in Vision: Critical Bands and Spread of Masking. Journal of the Optical Society of America, 62(10), 1221–1232. http://doi.org/10.1364/JOSA.62.001221
Stromeyer, C. F., & Klein, S. A. (1974). Spatial frequency channels in human vision as asymmetric (edge) mechanisms. Vision Research, 14(12), 1409–20. http://doi.org/10.1016/0042-6989(74)90016-9
Stromeyer, C. F., & Klein, S. A. (1975). Evidence against narrow-band spatial frequency channels in human vision: the detectability of frequency modulated gratings. Vision Research, 15(8-9), 899–910. http://doi.org/10.1016/0042-6989(75)90229-1
Sutter, A., Sperling, G., & Chubb, C. (1995). Measuring the spatial frequency selectivity of second-order texture mechanisms. Vision Research, 35(7), 915–924. http://doi.org/10.1016/0042-6989(94)00196-S
Tadmor, Y., & Tolhurst, D. J. (1993). Both the phase and the amplitude spectrum may determine the appearance of natural images. Vision Research, 33(1), 141–145. http://doi.org/10.1016/0042-6989(93)90067-7
Tadmor, Y., & Tolhurst, D. J. (1994). Discrimination of changes in the second-order statistics of nat
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top