Login | Register

Implementation of Agriculture Wastes in Different Construction Applications

Title:

Implementation of Agriculture Wastes in Different Construction Applications

Ahadzadeh Ghanad, Diba (2020) Implementation of Agriculture Wastes in Different Construction Applications. Masters thesis, Concordia University.

[thumbnail of Ahadzadeh Ghanad_MASc_F2020.pdf]
Preview
Text (application/pdf)
Ahadzadeh Ghanad_MASc_F2020.pdf - Accepted Version
Available under License Spectrum Terms of Access.
3MB

Abstract

Due to the growing population and increasing demand for more construction, much attention has been paid to environmental issues and the devastating effects of overgrowth in nature. Many challenges, including the 2030 challenge, have united developed countries to come together for a better and cleaner future. Canada is one of the allies in this challenge. In recent years, many alternatives to the main components of concrete have been introduced, which is known as one of the most widely used building materials. The use of waste in concrete as a substitute for main natural components (such as aggregates and sand) is one of the most popular methods to reduce environmental pollution by construction during these years. The use of tires, electronic components and agricultural waste are among the uses of waste as an alternative to concrete. Due to its ecofriendly natural, low cost and easy access, agricultural waste has received more attention than others. Several agricultural wastes such as hemp, coconut shells, and others were utilized successfully in producing agro-concrete. However, the limited availability of in-service data and stability of agro-concrete in the agricultural environment, which is very aggressive, is halting its acceptance in the construction industry. Therefore, this dissertation focused on examining the potential of using agro-waste in different construction applications. Effects of various factors including shape, replacement rate and physical properties of used agriculture wastes, type of binding materials, and exposure conditions on mechanical performance were evaluated. Also, a special type of concrete, known as Controlled low strength materials (CLSM), was tested as a potential hosting for high amounts of agro-wastes. Two types of CLSM were evaluated: a cement-based CLSM (i.e. with ordinary Portland cement) and zero-cement CLSM (i.e. with alkali-activated binder). Results showed the high potential of implementing agro-wastes in various construction applications, including agro-concrete, controlled low strength concrete for filling applications and zero-emission materials (i.e. zero cement).Moreover, alkali-activated CLSM showed a greater potential to incorporate a high amount of agro-wastes than that of cement-based CLSM. The research results represent a crucial point in getting these materials as acceptable as construction materials. Also, it will allow the agriculture industry to effectively recycle/reuse the agro-waste, along with converting it to a valuable product. This will have a measurable impact on the Canadian specifications for concrete for farm and livestock buildings.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (Masters)
Authors:Ahadzadeh Ghanad, Diba
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Building Engineering
Date:16 April 2020
Thesis Supervisor(s):Soliman, Ahmed
Keywords:CLSM, Agricultural waste, concrete material, Alkali activated material
ID Code:986870
Deposited By: Diba Ahadzadeh Ghanad
Deposited On:30 Jun 2021 15:02
Last Modified:02 Jun 2022 00:00

References:

Aboutabikh, M., Soliman, A. M., & El Naggar, M. H. (2016). Properties of cementitious material incorporating treated oil sands drill cuttings waste. Construction and Building Materials, 111, 751-757. doi:10.1016/j.conbuildmat.2016.02.163
Abutaha, F., Abdul Razak, H., & Kanadasan, J. (2016). Effect of palm oil clinker (POC) aggregates on fresh and hardened properties of concrete. Construction and Building Materials, 112, 416-423. doi:https://doi.org/10.1016/j.conbuildmat.2016.02.172
ACICommittee229. (2013). Report on Controlled Low-Strength Materials. Retrieved from Farmington Hills, USA:
Aciu, C., & Cobîrzan, N. (2013). Use of agricultural products and waste in the building materials industry. Proenvironment Promediu, 6(15).
Adewuyi, A. P., Otukoya, A. A., Olaniyi, O. A., & Olafusi, O. S. (2015). Comparative studies of steel, bamboo and rattan as reinforcing bars in concrete: Tensile and flexural characteristics. Open Journal of Civil Engineering, 5(02), 228.
Adom-Asamoah, M., & Afrifa Owusu, R. (2010). A comparative study of Bamboo reinforced concrete beams using different stirrup materials for rural construction.
Agamuthu, P. (2009). Challenges and opportunities in agro-waste management: An Asian perspective. Paper presented at the Inaugural Meeting of First Regional 3R Forum in Asia. Tokyo, Japan.
Agarwal, S. (2006). Pozzolanic activity of various siliceous materials. Cement and Concrete Research, 36(9), 1735-1739.
Agwu, O. E., & Akpabio, J. U. (2018). Using agro-waste materials as possible filter loss control agents in drilling muds: A review. Journal of Petroleum Science and Engineering, 163, 185-198. doi:10.1016/j.petrol.2018.01.009
Akhionbare, W. (2013). A Comparative Evaluation of the Application of Agro waste as Construction Material. International Journal of Science and Nature, 4(1), 141-144.
Al-Homoud, M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and environment, 40(3), 353-366.
Alexander, C. (1979). The timeless way of building (Vol. 1): New York: Oxford University Press.
Alizadeh, V. (2019). New approach for proportioning of controlled low strength materials. Construction and Building Materials, 201, 871-878.
Amin, N.-u. (2010). Use of bagasse ash in concrete and its impact on the strength and chloride resistivity. Journal of Materials in Civil Engineering, 23(5), 717-720.
Antico, F. C., Wiener, M. J., Araya-Letelier, G., & Retamal, R. G. (2017). Eco-bricks: a sustainable substitute for construction materials. Revista de la construcción, 16(3), 518-526. doi:10.7764/Rdlc.16.3.518
Aprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes – A review. Construction and Building Materials, 74, 176-187. doi:https://doi.org/10.1016/j.conbuildmat.2014.10.010
ASTM. (1997). Terminology relating to thermal insulating materials. In C 168-97.
ASTM. (2016a). Standard Guide for Moisture Conditioning of Wood and Wood-Based Materials. In ASTM D4933 - 16. West Conshohocken, PA: ASTM International.
ASTM. (2016b). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. In ASTM C192 M. West Conshohocken, Pennsylvania, USA. : ASTM International.
ASTM. (2016c). Standard Test Method for Density (Unit Weight), Yield, Cement Content, and Air Content (Gravimetric) of Controlled Low-Strength Material (CLSM). In ASTM D6023-07 (Vol. 04.09). ASTM International, West Conshohocken, PA: ASTM.
ASTM. (2016d). Standard Test Method for Preparation and Testing of Controlled Low Strength Material (CLSM) Test Cylinders. In. West Conshohocken, PA: ASTM International
ASTM. (2016e). Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials. In ASTM D4442 − 16. . West Conshohocken: ASTM.
ASTM, C. (2007). Standard practice for making and curing concrete test specimens in the laboratory. C192/C192M.
ASTM, D. (2000). 6103-00. Standard Test Method for Flow Consistency of Controlled Low-Strength Material (CLSM). American Society for Testing and Materials, PA, USA.
Atiş, C. D., Görür, E. B., Karahan, O., Bilim, C., İlkentapar, S., & Luga, E. (2015). Very high strength (120MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Construction and Building Materials, 96, 673-678. doi:https://doi.org/10.1016/j.conbuildmat.2015.08.089
Awoyera, P. O., Akinmusuru, J. O., & Ndambuki, J. M. (2016). Green concrete production with ceramic wastes and laterite. Construction and Building Materials, 117, 29-36.
Aydin, E. (2009). Sulphate resistance of high volume fly ash cement paste composites.
Babenko, M., Estokova, A., Savytskyi, M., & Unčík, S. (2018). Study of Thermal Properties of Lightweight Insulation Made of Flax Straw. Slovak Journal of Civil Engineering, 26, 9-14. doi:10.2478/sjce-2018-0008
Baker, D. E., & Chesnin, L. (1975). Chemical Monitoring of Soils for Environmental Quality and Animal and Human Health. In N. C. Brady (Ed.), Advances in Agronomy (Vol. 27, pp. 305-374): Academic Press.
Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and Concrete Research, 35(4), 658-670.
Baščarević, Z., Komljenović, M., Miladinović, Z., Nikolić, V., Marjanović, N., & Petrović, R. (2015). Impact of sodium sulfate solution on mechanical properties and structure of fly ash based geopolymers. Materials and Structures, 48(3), 683-697.
Belakroum, R., Gherfi, A., Kadja, M., Maalouf, C., Lachi, M., El Wakil, N., & Mai, T. H. (2018). Design and properties of a new sustainable construction material based on date palm fibers and lime. Construction and Building Materials, 184, 330-343.
Beraldo, A. (1999). Ultrasonic speed wave: cure type influence on wood-cement composite compression strength. Proceedings of the NDTISS, 99, 86-90.
Bhalla, S. Scientific Design of Bamboo Structure”. Retrieved from http://www.iid.ac.in/
Blanchet, P., Cloutier, A., & Riedl, B. (2000). Particleboard made from hammer milled black spruce bark residues. Wood Science and Technology, 34(1), 11-19.
Bothma, J. (2013). The structural use of synthetic fibres: thickness design of concrete slabs on grade. Stellenbosch: Stellenbosch University,
Brasken, W. (1997). Uninsulated and insulated concrete building structure production in situ. In: Google Patents.
Brink, F. E., & Rush, P. J. (1966). Bamboo reinforced concrete construction. US Naval Civil Engineering Laboratory, Port Hueneme, California.
Bruce W. Ramme, W. S. A., Morris Huffman, Frances A. McNeal, Charles F. Scholer, Richard L. Boone, Bradley M. Klute, Donald E. Milks, Glenn O. Schumacher, Christopher Crouch, Henry J. Kolbeck, Narasimhan Rajendran, Victor Smith, Kurt R. Grabow, , Ronald L. Larsen, K. B. R., Richard Sullivan, Daniel J. Green, Leo A. Legatski, Paul E. Reinhart, Samuel S. Tyson, Richard R. Halverson, William MacDonald, Harry C. Roof, Harold Umansky, William Hook,, & Oscar Manz, E. H. R., Orville R. Werner. (2005). Controlled Low-Strength Materials. Retrieved from American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959:
Cabral, M., Zegan, D., Palacios, J. H., Godbout, S., Fiorelli, J., Savastano, H., . . . Lagacé, R. (2016). Potential use of Agricultural Biomass for Cement Composite Materials: Aptitude Index Development and Validation. Paper presented at the Proceedings.
Chang, F. C., Lin, J. D., Tsai, C. C., & Wang, K. S. (2010). Study on cement mortar and concrete made with sewage sludge ash. Water Sci Technol, 62(7), 1689-1693. doi:10.2166/wst.2010.459
Chavalparit, O. (2006). Clean technology for the crude palm oil industry in Thailand.
Chindaprasirt, P., Rukzon, S., & Sirivivatnanon, V. (2008). Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Construction and Building Materials, 22(5), 932-938.
Concrete, A. I. C. C. o., & Aggregates, C. (2014). Standard test method for compressive strength of cylindrical concrete specimens: ASTM International.
Conley, B., Cruickshank, C. A., & Baldwin, C. (2018). 2.24 Insulation Materials. In I. Dincer (Ed.), Comprehensive Energy Systems (pp. 760-795). Oxford: Elsevier.
Daniell, T. (2013). The Mothers of Invention. Architectural Design, 83(1), 114-123. doi:10.1002/ad.1533
Das, P., Basa, B., Digal, S., & Jana, C. (2016). Cane Reinforced Cement Concrete: An Experimental Approach on Flexural Strength Characteristics In Comparison with Steel RCC. International Journal of Civil Engineering and Technology, 7(4).
Davidovits, J. (1991). Geopolymers: inorganic polymeric new materials. Journal of thermal analysis and calorimetry, 37(8), 1633-1656.
Davidovits, J. (2005). Geopolymer, green chemistry and sustainable development solutions: proceedings of the world congress geopolymer Geopolymer Institute.
Davidovits, J., Comrie, D. C., Paterson, J. H., & Ritcey, D. J. (1990). Geopolymeric concretes for environmental protection. Concrete International, 12(7), 30-39.
Delate, J.-J. (1994). Etude sur les bâtiments d'élevage utilisés en production porcine en zone tropicale.
Do, T. M., & Kim, Y. S. (2016). Engineering properties of controlled low strength material (CLSM) incorporating red mud. International Journal of Geo-Engineering, 7(1), 7. doi:UNSP 7
10.1186/s40703-016-0022-y
Duxson, P., Provis, J. L., Lukey, G. C., & Van Deventer, J. S. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37(12), 1590-1597.
Ehrlich, P. R., & Holdren, J. P. (1971). Impact of population growth. Science, 171(3977), 1212-1217.
Falade, F. (1995). An investigation of periwinkle shells as coarse aggregate in concrete. Building and environment, 30(4), 573-577. doi:10.1016/0360-1323(94)00057-Y
Falade, F., Ikponmwosa, E., & Ojediran, N. (2010). Behaviour Of Lightweight Concrete Containing Periwinkle Shells At Elevated Temperature.
FAQ. (2014). How have crop yields changed since 1960? , from United Nations Food and Agricultural Organization (FAO) http://www.fao.org/faostat/en/?#data/
Farnood Ahmadi, P., Ardeshir, A., Ramezanianpour, A. M., & Bayat, H. (2018). Characteristics of heat insulating clay bricks made from zeolite, waste steel slag and expanded perlite. Ceramics International, 44(7), 7588-7598. doi:10.1016/j.ceramint.2018.01.175
Gaggino, R., Kreiker, J., Filippin, C., Amono, M. P. S., Laria, J. G., & Peisino, L. E. (2018). The Comprehensive Comparison of Thermal and Physical-Mechanical Properties of the Recycled Rubber and Plastic Roofing Tiles versus Roofing Tiles Made with Different Traditional Materials. Advances in Civil Engineering, 1-11. doi:Artn 7361798
10.1155/2018/7361798
Ganiron, T. U. (2014). Effect of sawdust as fine aggregate in concrete mixture for building construction. International Journal of Advanced Science and Technology, 63, 73-82.
Ganpule, S. S., & Pataskar, S. (2011). Use of porous concrete as a green construction material for pavement. International Journal of Earth Sciences and Engineering, 4, 764-767.
Gastaldini, A., Isaia, G., Gomes, N., & Sperb, J. (2007). Chloride penetration and carbonation in concrete with rice husk ash and chemical activators. Cement and Concrete Composites, 29(3), 176-180.
Gebler, S. H., & Klieger, P. (1986). Effect of fly ash on physical properties of concrete. Special Publication, 91, 1-50.
Ghavami, K. (1995). Ultimate load behaviour of bamboo-reinforced lightweight concrete beams. Cement and Concrete Composites, 17(4), 281-288. doi:https://doi.org/10.1016/0958-9465(95)00018-8
Ghemawat, P. (2007). Redefining global strategy: Crossing borders in a world where differences still matter: Harvard Business Press.
Ghernouti, Y., Rabehi, B., Bouziani, T., Ghezraoui, H., & Makhloufi, A. (2015). Fresh and hardened properties of self-compacting concrete containing plastic bag waste fibers (WFSCC). Construction and Building Materials, 82, 89-100. doi:10.1016/j.conbuildmat.2015.02.059
Ghosh, S. (2003). Advances in cement technology: chemistry, manufacture and testing: Crc Press.
Gonçalves, M., & Bergmann, C. (2007). Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure. Construction and Building Materials, 21(12), 2059-2065.
Gonzalez-Fonteboa, B., & Martinez-Abella, F. (2008). Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Building and environment, 43(4), 429-437. doi:10.1016/j.buildenv.2007.01.008
González-Kunz, R., Pineda, P., Brás, A., & Morillas, L. (2017). Plant biomass ashes in cement-based building materials. Feasibility as eco-efficient structural mortars and grouts. Sustainable Cities and Society, 31, 151-172.
Gunasekaran, K., Annadurai, R., & Kumar, P. (2012). Long term study on compressive and bond strength of coconut shell aggregate concrete. Construction and Building Materials, 28(1), 208-215.
Gunasekaran, K., Annadurai, R., & Kumar, P. S. (2012). Long term study on compressive and bond strength of coconut shell aggregate concrete. Construction and Building Materials, 28(1), 208-215. doi:https://doi.org/10.1016/j.conbuildmat.2011.08.072
Gunasekaran, K., Ramasubramani, R., Annadurai, R., & Chandar, S. P. (2014). Study on reinforced lightweight coconut shell concrete beam behavior under torsion. Materials & Design, 57, 374-382.
Gupta, T. (1998). Building materials in India: 50 years. Build. Mater. Technol. Promot. Counc.(New Delhi Minist. Urban Aff. Employment, Gov. India).
Guzman, A. D. M., & Munno, M. G. T. (2015). Design of a Brick With Sound Absorption Properties Based on Plastic Waste & Sawdust. IEEE Access, 3, 1260-1271. doi:10.1109/Access.2015.2461536
Hamidian, M. R., Shafigh, P., Jumaat, M. Z., Alengaram, U. J., & Sulong, N. R. (2016). A new sustainable composite column using an agricultural solid waste as aggregate. Journal of cleaner production, 129, 282-291.
Hansen, H., & Zöld, A. (2001). Ecobuild–Environmentally friendly construction and building. Project co-ordinator Horsens Polytechnic, Denmark.
Hwang, C. L., Chiang, C. H., Huynh, T. P., Vo, D. H., Jhang, B. J., & Ngo, S. H. (2017). Properties of alkali-activated controlled low-strength material produced with waste water treatment sludge, fly ash, and slag. Construction and Building Materials, 135, 459-471. doi:10.1016/j.conbuildmat.2017.01.014
Imrose Bin, M., Sheikh, S. A., Md. Ferdous, Z., & Ullah, M. S. (2018). Effects of Multiple Supplementary Cementitious Materials on Workability and Strength of Lightweight Aggregate Concrete. Jordan Journal of Civil Engineering, 12(1).
Ismail, M. S., & Waliuddin, A. M. (1996). Effect of rice husk ash on high strength concrete. Construction and Building Materials, 10(7), 521-526. doi:Doi 10.1016/0950-0618(96)00010-4
Iyer, S. (2002). Guidelines for building bamboo-reinforced masonry in earthquake-prone areas in India. University Of Southern California Los Angeles, CA,
Jarabo, R., Monte, M. C., Fuente, E., Santos, S. F., & Negro, C. (2013). Corn stalk from agricultural residue used as reinforcement fiber in fiber-cement production. Industrial Crops and Products, 43, 832-839. doi:https://doi.org/10.1016/j.indcrop.2012.08.034
Jayaprithika, A., & Sekar, S. K. (2016). Stress-strain characteristics and flexural behaviour of reinforced Eco-friendly coconut shell concrete. Construction and Building Materials, 117, 244-250. doi:10.1016/j.conbuildmat.2016.05.016
Jiao, L.-l., & Sun, J.-h. (2014). A thermal degradation study of insulation materials extruded polystyrene. Procedia Engineering, 71, 622-628.
Jung, D. S., Ryou, M.-H., Sung, Y. J., Park, S. B., & Choi, J. W. (2013). Recycling rice husks for high-capacity lithium battery anodes. Proceedings of the National Academy of Sciences, 110(30), 12229-12234.
Kaliyavaradhan, S. K., & Ling, T.-C. (2017). Potential of CO2 sequestration through construction and demolition (C&D) waste—An overview. Journal of CO2 Utilization, 20, 234-242.
Kanojia, A., & Jain, S. K. (2017). Performance of coconut shell as coarse aggregate in concrete. Construction and Building Materials, 140, 150-156. doi:https://doi.org/10.1016/j.conbuildmat.2017.02.066
Kassem, M., Soliman, A., & El Naggar, H. (2018). Sustainable approach for recycling treated oil sand waste in concrete: Engineering properties and potential applications. Journal of cleaner production, 204, 50-59.
Katz, A., & Kovler, K. (2004). Utilization of industrial by-products for the production of controlled low strength materials (CLSM). Waste Manag, 24(5), 501-512. doi:10.1016/S0956-053X(03)00134-X
Kaur, M., & Kaur, M. (2012). A review on utilization of coconut shell as coarse aggregates in mass concrete. International journal of applied engineering research, 7(11), 7-9.
Khedari, J., Nankongnab, N., Hirunlabh, J., & Teekasap, S. (2004). New low-cost insulation particleboards from mixture of durian peel and coconut coir. Building and environment, 39(1), 59-65. doi:10.1016/j.buildenv.2003.08.001
Kim, Y.-Y., Lee, K.-M., Bang, J.-W., & Kwon, S.-J. (2014). Effect of W/C ratio on durability and porosity in cement mortar with constant cement amount. Advances in Materials Science and Engineering, 2014.
Kledyński, Z., Machowska, A., Pacewska, B., & Wilińska, I. (2017). Investigation of hydration products of fly ash–slag pastes. Journal of thermal analysis and calorimetry, 130(1), 351-363. doi:10.1007/s10973-017-6233-4
Kosmatka, S. H. (1994). Bleeding. In Significance of Tests and Properties of Concrete and Concrete-Making Materials: ASTM International.
Kronlöf, A. (1997). Filler effect of inert mineral powder in concrete.
Kubica, R. (2002). Insulated concrete wall system. In: Google Patents.
Kumar, D., & Mandal, S. (2014). Uncertainty in improving durability aspects and mechanical properties of bamboo reinforced concrete. International Journal of Advance Research, Ideas and Innovations in Technology, 1(1), 1-5.
Kuo, W. T., Wang, H. Y., Shu, C. Y., & Su, D. S. (2013). Engineering properties of controlled low-strength materials containing waste oyster shells. Construction and Building Materials, 46, 128-133. doi:10.1016/j.conbuildmat.2013.04.020
Kupaei, R. H., Alengaram, U. J., Jumaat, M. Z. B., & Nikraz, H. (2013). Mix design for fly ash based oil palm shell geopolymer lightweight concrete. Construction and Building Materials, 43, 490-496. doi:https://doi.org/10.1016/j.conbuildmat.2013.02.071
Lachemi, M., Hossain, K. M., Shehata, M., & Thaha, W. (2007). Characteristics of controlled low-strength materials incorporating cement kiln dust. Canadian Journal of Civil Engineering, 34(4), 485-495.
Lachemi, M., Şahmaran, M., Hossain, K. M. A., Lotfy, A., & Shehata, M. (2010). Properties of controlled low-strength materials incorporating cement kiln dust and slag. Cement and Concrete Composites, 32(8), 623-629.
Lahoti, M., Tan, K. H., & Yang, E.-H. (2019). A critical review of geopolymer properties for structural fire-resistance applications. Construction and Building Materials, 221, 514-526. doi:https://doi.org/10.1016/j.conbuildmat.2019.06.076
Lee, N. K., Kim, H. K., Park, I. S., & Lee, H. K. (2013). Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by-products. Construction and Building Materials, 49, 738-746. doi:10.1016/j.conbuildmat.2013.09.002
Lei, Y., Zhang, Q., Nielsen, C., & He, K. (2011). An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990–2020. Atmospheric Environment, 45(1), 147-154.
Lin Showmay, H., & ChengTzu Thomas, H. Stress-Strain Behavior of Steel-fiber High-Strength Concrete Under Compression. ACI Structural Journal, 91(4). doi:10.14359/4152
Liou, T.-H., & Yang, C.-C. (2011). Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Materials science and engineering: B, 176(7), 521-529.
Liu, N., Huo, K., McDowell, M. T., Zhao, J., & Cui, Y. (2013). Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Scientific reports, 3(1), 1-7.
Liuzzi, S., Sanarica, S., & Stefanizzi, P. (2017). Use of agro-wastes in building materials in the Mediterranean area: a review. Ati 2017 - 72nd Conference of the Italian Thermal Machines Engineering Association, 126, 242-249. doi:10.1016/j.egypro.2017.08.147
Loehr, R. (2012). Agricultural waste management: problems, processes, and approaches: Elsevier.
Loh, Y., Sujan, D., Rahman, M. E., & Das, C. A. (2013). Sugarcane bagasse—The future composite material: A literature review. Resources, conservation and recycling, 75, 14-22.
Lu, J.-X., Yan, X., He, P., & Poon, C. S. (2019). Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. Journal of cleaner production.
Lu, N., Swan Jr, R. H., & Ferguson, I. (2012). Composition, structure, and mechanical properties of hemp fiber reinforced composite with recycled high-density polyethylene matrix. Journal of Composite Materials, 46(16), 1915-1924.
Madurwar, M. V., Ralegaonkar, R. V., & Mandavgane, S. A. (2013). Application of agro-waste for sustainable construction materials: A review. Construction and Building Materials, 38, 872-878. doi:10.1016/j.conbuildmat.2012.09.011
Manasseh, J. (2010). A review of partial replacement of cement with some agro wastes. Nigerian Journal of Technology, 29(2), 12-20.
Mannan, M., & Ganapathy, C. (2004). Concrete from an agricultural waste-oil palm shell (OPS). Building and environment, 39(4), 441-448.
Mannan, M. A., & Ganapathy, C. (2004). Concrete from an agricultural waste-oil palm shell (OPS). Building and environment, 39(4), 441-448. doi:10.1016/j.buildenv.2003.10.007
Manohar, K., Ramlakhan, D., Kochhar, G., & Haldar, S. (2006). Biodegradable fibrous thermal insulation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28(1), 45-47.
Max Roser, H. R. (2019, 2019). crop-yields. 2017. Retrieved from https://ourworldindata.org/crop-yields
Meher, K. K., Panchwagh, A. M., Rangrass, S., & Gollakota, K. G. (1995). Biomethanation of tobacco waste. Environ Pollut, 90(2), 199-202. doi:https://doi.org/10.1016/0269-7491(94)00107-O
Mehta, P. K. (1978). Siliceous ashes and hydraulic cements prepared therefrom. In: Google Patents.
Mehta, P. K. (1994). Mineral admixtures for concrete-an overview of recent developments. Paper presented at the Advances in Cement and Concrete.
Mehta, P. K. (2002). Greening of the concrete industry for sustainable development. Concrete International, 24(7), 23-28.
Mehta, P. K. (2004). High-performance, high-volume fly ash concrete for sustainable development. Paper presented at the Proceedings of the international workshop on sustainable development and concrete technology.
Mehta, P. K. (2010). Sustainable cements and concrete for the climate change era–a review. Paper presented at the Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies, Aneona, Italy.
Mehta, P. K., & Monteiro, P. J. (2006). Concrete: microstructure, properties, and materials.
Mehta, P. K., & Monteiro, P. J. (2017). CONCRETE Microstructure, Properties and Materials. In.
Meyer, C. (2009). The greening of the concrete industry. Cement & Concrete Composites, 31(8), 601-605. doi:10.1016/j.cemconcomp.2008.12.010
Mishra, S., & Siddiqui, N. A. (2014). A review on environmental and health impacts of cement manufacturing emissions. International journal of geology, agriculture and environmental sciences, 2(3), 26-31.
Mneina, A., Soliman, A. M., Ahmed, A., & El Naggar, M. H. (2018). Engineering properties of Controlled Low-Strength Materials containing Treated Oil Sand Waste. Construction and Building Materials, 159, 277-285. doi:10.1016/j.conbuildmat.2017.10.093
Mo, K. H., Alengaram, U. J., Jumaat, M. Z., Yap, S. P., & Lee, S. C. (2016). Green concrete partially comprised of farming waste residues: a review. Journal of cleaner production, 117, 122-138. doi:https://doi.org/10.1016/j.jclepro.2016.01.022
Modani, P. O., & Vyawahare, M. R. (2013). Utilization of Bagasse Ash as a Partial Replacement of Fine Aggregate in Concrete. Chemical, Civil and Mechanical Engineering Tracks of 3rd Nirma University International Conference on Engineering (Nuicone2012), 51, 25-29. doi:10.1016/j.proeng.2013.01.007
Moreno, P., Fragozo, R., Vesga, S., Gonzalez, M., Hernandez, L., Gamboa, I. D., & Delgado, J. (2018). Tobacco waste ash: a promising supplementary cementitious material. International Journal of Energy and Environmental Engineering, 9(4), 499-504. doi:10.1007/s40095-018-0272-x
Munro, J. (2012, October 26)). Architect makes bricks using cattle blood. The University of Westminster in London, London. Retrieved from https://phys.org/news/2012-10-architect-bricks-cattle-blood.html
Muthusamy, K., Nordin, N., Vesuvapateran, G., Ali, M., Annual, N. M., Harun, H., & Ullap, H. (2014). Exploratory study of rubber seed shell as partial coarse aggregate replacement in concrete. Res J Appl Sci Eng Technol, 7(6), 1013-1016.
Muthusamy, K., & Sabri, N. (2012). Cockle shell: a potential partial coarse aggregate replacement in concrete. International Journal of Science, Environment and Technology, 1(4), 260-267.
Naganathan, S., Mustapha, K., & Omar, H. (2012). Use of recycled concrete aggregate in controlled low-strength material (CLSM). civil engineering dimension, 14(1), 13-18.
Naganathan, S., Razak, H. A., & Hamid, S. N. A. (2012). Properties of controlled low-strength material made using industrial waste incineration bottom ash and quarry dust. Materials & Design, 33, 56-63. doi:10.1016/j.matdes.2011.07.014
Nagendran, R. (2011). Agricultural Waste and Pollution. In T. M. Letcher & D. A. Vallero (Eds.), Waste (pp. 341-355). Boston: Academic Press.
Narayanan, R., & Darwish, I. Y. S. Use of Steel Fibers as Shear Reinforcement. ACI Structural Journal, 84(3). doi:10.14359/2654
naturalpaint. (2013). Termoizolatie din fibre de canepa.
Novoa, P. J. R. O., Ribeiro, M. C. S., Ferreira, A. M., & Marques, A. T. (2004). Mechanical characterization of lightweight polymer mortar modified with cork granulates. Composites science and technology, 64(13-14), 2197-2205. doi:10.1016/j.compscitech.2004.03.006
Obi, F., Ugwuishiwu, B., & Nwakaire, J. (2016). Agricultural waste concept, generation, utilization and management. Nigerian Journal of Technology, 35(4), 957–964.
Obilade, I., & Olutoge, F. (2014). Flexural Characteristics of Rattan Cane Reinforced Concrete Beams. International Journal of Engineering and Science, 3, 38-42.
Obla, K. H. (2009). What is green concrete? The Indian Concrete Journal, 24, 26-28.
Olanipekun, E. A., Olusola, K. O., & Ata, O. (2006). A comparative study of concrete properties using coconut shell and palm kernel shell as coarse aggregates. Building and environment, 41(3), 297-301. doi:10.1016/j.buildenv.2005.01.029
Onésippe, C., Passe-Coutrin, N., Toro, F., Delvasto, S., Bilba, K., & Arsène, M.-A. (2010). Sugar cane bagasse fibres reinforced cement composites: thermal considerations. Composites Part A: Applied Science and Manufacturing, 41(4), 549-556.
Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Palomo, A., & Chindaprasit, P. (2014). Handbook of alkali-activated cements, mortars and concretes: Elsevier.
Paiva, A., Pereira, S., Sá, A., Cruz, D., Varum, H., & Pinto, J. (2012). A contribution to the thermal insulation performance characterization of corn cob particleboards. Energy and Buildings, 45, 274-279. doi:https://doi.org/10.1016/j.enbuild.2011.11.019
Panesar, D. K., & Shindman, B. (2012). The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cement & Concrete Composites, 34(9), 982-992. doi:10.1016/j.cemconcomp.2012.06.003
Panyakaew, S., & Fotios, S. (2008). 321: Agricultural Waste Materials as Thermal Insulation for Dwellings in Thailand: Preliminary Results. Paper presented at the 25 Conference on Passive and Low Energy Architecture, Dublin.
Panzera, T., Christoforo, A., Cota, F., Borges, P. R., & Bowen, C. (2011). Ultrasonic pulse velocity evaluation of cementitious materials. Advances in Composite Materials–Analysis of Natural and Man-Made Materials, 412-437.
Park, C., Noh, M., & Park, T. (2005). Rheological properties of cementitious materials containing mineral admixtures. Cement and Concrete Research, 35(5), 842-849.
Park, S.-S., Kim, S.-J., Chen, K., Lee, Y.-J., & Lee, S.-B. (2018). Crushing characteristics of a recycled aggregate from waste concrete. Construction and Building Materials, 160, 100-105.
Paya, J., Monzo, J., Borrachero, M. V., Diaz-Pinzon, L., & Ordonez, L. M. (2002). Sugar-cane bagasse ash (SCBA): studies on its properties for reusing in concrete production. Journal of Chemical Technology and Biotechnology, 77(3), 321-325. doi:10.1002/jctb.549
Pinto, J., Paiva, A., Varum, H., Costa, A., Cruz, D., Pereira, S., . . . Agarwal, J. (2011). Corn's cob as a potential ecological thermal insulation material. Energy and Buildings, 43(8), 1985-1990.
Pinto, J., Vieira, B., Pereira, H., Jacinto, C., Vilela, P., Paiva, A., . . . Varum, H. (2012). Corn cob lightweight concrete for non-structural applications. Construction and Building Materials, 34, 346-351.
Pinto, J., Vieira, B., Pereira, H., Jacinto, C., Vilela, P., Paiva, A., . . . Varum, H. (2012). Corn cob lightweight concrete for non-structural applications. Construction and Building Materials, 34, 346-351. doi:10.1016/j.conbuildmat.2012.02.043
Pitt, N. (1976). Process for the preparation of siliceous ashes. In: Google Patents.
Polprasert, C. (2007). Organic Waste Recycling: Technology and Management - Third Edition. PB - IWA Publishing.
Ponnada, M. R., Prasad, S. S., & Dharmala, H. (2016). Compressive strength of concrete with partial replacement of aggregates with granite powder and cockle shell. Malaysian Journal of Civil Engineering, 28(2).
Ponraj, M., Talaiekhozani, A., Zin, R. M., Ismail, M., Majid, M. Z. A., Keyvanfar, A., & Kamyab, H. Bioconcrete Strength, Durability, Permeability, Recycling and Effects on Human Health: A.
Portal, C. E. (2007). Ultrasonic Pulse Velocity Method, Civil Engineering Test. Retrieved from http://www.engineeringcivil.com/ultraso-nicpulse-velocity-method.html
Prakash, R., Thenmozhi, R., Raman, S. N., & Subramanian, C. (2019). Fibre reinforced concrete containing waste coconut shell aggregate, fly ash and polypropylene fibre. Revista Facultad de Ingeniería Universidad de Antioquia(94), 33-42.
Prétot, S., Collet, F., & Garnier, C. (2014). Life cycle assessment of a hemp concrete wall: Impact of thickness and coating. Building and environment, 72, 223-231.
Provis, J. L., & Van Deventer, J. S. (2013). Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM (Vol. 13): Springer Science & Business Media.
Prusty, J. K., & Patro, S. K. (2015). Properties of fresh and hardened concrete using agro-waste as partial replacement of coarse aggregate – A review. Construction and Building Materials, 82, 101-113. doi:https://doi.org/10.1016/j.conbuildmat.2015.02.063
Prusty, J. K., Patro, S. K., & Basarkar, S. (2016a). Concrete using agro-waste as fine aggregate for sustainable built environment–A review. International Journal of Sustainable Built Environment, 5(2), 312-333.
Prusty, J. K., Patro, S. K., & Basarkar, S. S. (2016b). Concrete using agro-waste as fine aggregate for sustainable built environment – A review. International Journal of Sustainable Built Environment, 5(2), 312-333. doi:10.1016/j.ijsbe.2016.06.003
Puertas, F., Gutierrez, R., Fernández-Jiménez, A., Delvasto, S., & Maldonado, J. (2002). Alkaline cement mortars. Chemical resistance to sulfate and seawater attack. Materiales de Construccion, 52(267), 55-71.
Qian, J., Hu, Y., Zhang, J., Xiao, W., & Ling, J. (2019). Evaluation the performance of controlled low strength material made of excess excavated soil. Journal of cleaner production, 214, 79-88.
Qian, J. S., Shu, X., Dong, Q., Ling, J. M., & Huang, B. S. (2015). Laboratory characterization of controlled low-strength materials. Materials & Design, 65, 806-813. doi:10.1016/j.matdes.2014.10.012
Quintavalla, A., & Heine, K. (2019). Priorities and human rights. International Journal of Human Rights, 23(4), 679-697. doi:10.1080/13642987.2018.1562917
Raman, S. N., Ngo, T., Mendis, P., & Mahmud, H. B. (2011). High-strength rice husk ash concrete incorporating quarry dust as a partial substitute for sand. Construction and Building Materials, 25(7), 3123-3130. doi:10.1016/j.conbuildmat.2010.12.026
Ramasamy, V., & Biswas, S. (2008). Performance of rice husk ash concrete with superplasticizers. ICI J, 4, 27-34.
Ramezanianpour, A., Bina, G., & Rahimi, H. (2000). The role of rice husk ash in production of lightweight structural panels. Paper presented at the Proceedings 3rd International Conference on Concrete.
Ramezanianpour, A., Gafarpour, F., & Majedi, M. (1995). The use of rice husk ash in the building industry. Building and Housing Research Center (BHRC), winter.
Ramezanianpour, A. A., Mahdikhani, M., & Ahmadibeni, G. (2009). The Effect of Rice Husk Ash on Mechanical Properties and Durability of Sustainable Concretes. International Journal of Civil Engineering, 7(2), 83-91.
Rao, A., Jha, K. N., & Misra, S. (2007). Use of aggregates from recycled construction and demolition waste in concrete. Resources, conservation and recycling, 50(1), 71-81.
Raut, S., Ralegaonkar, R., & Mandavgane, S. (2011). Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks. Construction and Building Materials, 25(10), 4037-4042.
Razak, H. A., Naganathan, S., & Hamid, S. N. A. (2010a). Controlled Low-Strength Material Using Industrial Waste Incineration Bottom Ash and Refined Kaolin. Arabian Journal for Science and Engineering, 35(2b), 53-67.
Razak, H. A., Naganathan, S., & Hamid, S. N. A. (2010b). Controlled low-strength material using industrial waste incineration bottom ash and refined kaolin. Arabian Journal for Science and Engineering, 35(2 A), 53-67.
Reddy, B. D., Jyothy, S. A., & Shaik, F. (2014). Experimental analysis of the use of coconut shell as coarse aggregate. J. Mech. Civil Eng, 10(6), 6-13.
Reis, J. M. L. (2006). Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Construction and Building Materials, 20(9), 673-678. doi:https://doi.org/10.1016/j.conbuildmat.2005.02.008
Reis, J. M. L., & Ferreira, A. J. M. (2003). The influence of notch depth on the fracture mechanics properties of polymer concrete. International Journal of Fracture, 124(1-2), 33-42. doi:10.1023/B:FRAC.0000009302.36274.e9
Reis, J. M. L., & Ferreira, A. J. M. (2004). Assessment of fracture properties of epoxy polymer concrete reinforced with short carbon and glass fibers. Construction and Building Materials, 18(7), 523-528. doi:10.1016/j.conbuildmat.2004.04.010
Roskovic, R., & Bjegovic, D. (2005). Role of mineral additions in reducing CO2 emission. Cement and Concrete Research, 35(5), 974-978. doi:10.1016/j.cemconres.2004.04.028
Rossi, S., Cairo, E., Krause, C., & Deslauriers, A. (2015). Growth and basic wood properties of black spruce along an alti-latitudinal gradient in Quebec, Canada. Annals of forest science, 72(1), 77-87.
Rukzon, S., & Chindaprasirt, P. (2012). Utilization of bagasse ash in high-strength concrete. Materials & Design, 34, 45-50. doi:10.1016/j.matdes.2011.07.045
Salas, J., Alvarez, M., & Veras, J. (1986). Lightweight insulating concretes with rice husk. International Journal of Cement Composites and Lightweight Concrete, 8(3), 171-180. doi:10.1016/0262-5075(86)90038-2
Sales, A., & Lima, S. A. (2010). Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manag, 30(6), 1114-1122. doi:10.1016/j.wasman.2010.01.026
Samantasinghar, S., & Singh, S. P. (2019). Fresh and Hardened Properties of Fly Ash–Slag Blended Geopolymer Paste and Mortar. International Journal of Concrete Structures and Materials, 13(1), 47.
San-José, J. T., Vegas, I., & Meyer, F. (2006). Structural analysis of FRP reinforced polymer concrete material. Construction and Building Materials, 20(10), 971-981.
Sankar, S., Sharma, S. K., Kaur, N., Lee, B., Kim, D. Y., Lee, S., & Jung, H. (2016). Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by a chemical method. Ceramics International, 42(4), 4875-4885.
Saraswathy, V., & Song, H.-W. (2007). Corrosion performance of rice husk ash blended concrete. Construction and Building Materials, 21(8), 1779-1784.
Sathiparan, N., & De Zoysa, H. (2018). The effects of using agricultural waste as partial substitute for sand in cement blocks. Journal of Building Engineering, 19, 216-227.
Scott, E. (2017). Mind over matter. Green: sustainable architecture and landscape design(54), 32.
Sengupta, J. (2002). Recycling of agro-industrial wastes for manufacturing of building materials and components in India. An over view. Civil Engineering & Construction Review, 15(2), 23-33.
Shafigh, P., Jumaat, M. Z., & Mahmud, H. (2011). Oil palm shell as a lightweight aggregate for production high strength lightweight concrete. Construction and Building Materials, 25(4), 1848-1853. doi:10.1016/j.conbuildmat.2010.11.075
Shafigh, P., Jumaat, M. Z., Mahmud, H. B., & Alengaram, U. J. (2011). A new method of producing high strength oil palm shell lightweight concrete. Materials & Design, 32(10), 4839-4843.
Shafigh, P., Mahmud, H. B., Jumaat, M. Z., & Zargar, M. (2014). Agricultural wastes as aggregate in concrete mixtures – A review. Construction and Building Materials, 53, 110-117. doi:10.1016/j.conbuildmat.2013.11.074
Singh, M., & Siddique, R. (2014). Compressive strength, drying shrinkage and chemical resistance of concrete incorporating coal bottom ash as partial or total replacement of sand. Construction and Building Materials, 68, 39-48.
SMITH, A. (2018). Controlled Low-Strength Material.
Sundarraj, A. A., & Ranganathan, T. V. (2018). A review on cellulose and its utilization from agro-industrial waste. Drug Inven Today 2018b, 10, 89-94.
Swamy, R. N. (2008). Design for sustainable development of concrete construction. Innovations in Structural Engineering and Construction, Vols 1 and 2, 47-54.
Tashima, M. M., Silva, C. A. d., Akasaki, J. L., & Barbosa, M. B. (2004). The possibility of adding the rice husk ash (RHA) to the concrete. Paper presented at the the Proceedings of the 2004 International RILEM Conference on the Use of Recycled Materials in Building and Structures.
Tay, J.-H. (1989). Reclamation of wastewater and sludge for concrete making. Resources, conservation and recycling, 2(3), 211-227. doi:10.1016/0921-3449(89)90026-8
Thandavamoorthy, T. (2016). Wood waste as coarse aggregate in the production of concrete. European Journal of Environmental and Civil Engineering, 20(2), 125-141.
Türkel, S. (2006). Long-term compressive strength and some other properties of controlled low strength materials made with pozzolanic cement and Class C fly ash. Journal of hazardous materials, 137(1), 261-266.
Valenti, M. (1995). Plastic+ asphalt=plasphalt'. Mechanical Engineering, 117(12), 13-13.
Wang, C.-C., & Wang, H.-Y. (2017). Assessment of the compressive strength of recycled waste LCD glass concrete using the ultrasonic pulse velocity. Construction and Building Materials, 137, 345-353. doi:https://doi.org/10.1016/j.conbuildmat.2017.01.117
Wang, H.-Y., Kuo, W.-T., Lin, C.-C., & Po-Yo, C. (2013). Study of the material properties of fly ash added to oyster cement mortar. Construction and Building Materials, 41, 532-537.
Wang, L., Chen, S. S., Tsang, D. C., Poon, C.-S., & Dai, J.-G. (2017). CO2 curing and fibre reinforcement for green recycling of contaminated wood into high-performance cement-bonded particleboards. Journal of CO2 Utilization, 18, 107-116.
Wang, L., Iris, K., Tsang, D. C., Yu, K., Li, S., Poon, C. S., & Dai, J.-G. (2018). Upcycling wood waste into fibre-reinforced magnesium phosphate cement particleboards. Construction and Building Materials, 159, 54-63.
Wesche, K. (1991). Fly ash in concrete: properties and performance: CRC Press.
Wroblewski, L., Hristozov, D., & Sadeghian, P. (2016). Durability of Concrete Beams with Bonded FRP Composites made of Flax and Glass Fibers. Paper presented at the 7th International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS VII), Vancouver, BC, Canada.
Wu, F., Xiao, Z., Zeng, B., Chen, L., Liu, H., Liang, M., . . . Mi, B. (2019). Experimental and reduction leaching kinetics simulation of iron-rich manganese oxide ore using tobacco stem concrete as reducing agent. Metallurgical Research & Technology, 116(4), 422.
Xu, L., & Huang, Y. (2017). Effects of voids on concrete tensile fracturing: a mesoscale study. Advances in Materials Science and Engineering, 2017.
Xu, W., Lo, T. Y., & Memon, S. A. (2012). Microstructure and reactivity of rich husk ash. Construction and Building Materials, 29, 541-547.
Yan, D. Y. S., Tang, I. Y., & Lo, I. M. C. (2014). Development of controlled low-strength material derived from beneficial reuse of bottom ash and sediment for green construction. Construction and Building Materials, 64, 201-207. doi:10.1016/j.conbuildmat.2014.04.087
Yarbrough, D. W., Wilkes, K. E., Olivier, P. A., Graves, R. S., & Vohra, A. (2005). Apparent thermal conductivity data and related information for rice hulls and crushed pecan shells. Thermal Conductivity, 27, 222-230.
Yoshizawa, S. (2004). Global trends in waste generation. REWAS2004, Madrid Spain.
Zareei, S. A., Ameri, F., & Bahrami, N. (2018). Microstructure, strength, and durability of eco-friendly concretes containing sugarcane bagasse ash. Construction and Building Materials, 184, 258-268.
Zeng, Q., Li, K., Fen-chong, T., & Dangla, P. (2012). Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes. Construction and Building Materials, 27(1), 560-569.
Zhai, G. H., Chen, Z. N., & Qing, X. M. (2015). Enhanced Isolation of a Closely Spaced Four-Element MIMO Antenna System Using Metamaterial Mushroom. IEEE Transactions on Antennas and Propagation, 63(8), 3362-3370. doi:10.1109/Tap.2015.2434403
Zhang, J. X., Wang, J. G., Li, X. H., Zhou, T. J., & Guo, Y. Y. (2018). Rapid-hardening controlled low strength materials made of recycled fine aggregate from construction and demolition waste. Construction and Building Materials, 173, 81-89. doi:10.1016/j.conbuildmat.2018.04.023
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top