Login | Register

Data mining with bilattices


Data mining with bilattices

Wang, Xiaohong (2001) Data mining with bilattices. Masters thesis, Concordia University.

[thumbnail of MQ59344.pdf]
Text (application/pdf)


Data mining has become a key research area in database after Agrawal and Sirkant introduced association rules in data mining and proposed Apriori for mining association. However, most of the works focuses on finding patterns on itemsets, especially associations between items. With the fast development of high technologies and large scale of information collection tools, the need for data mining has gone far beyond association mining. In this thesis, a new framework is established that largely extends the current existing data mining field. While the traditional data mining problems can be viewed as computing itemset lattice, vet another equal important data mining problem is mining circumstance which forms a second lattice: circumstance lattice. In itemset lattice, extensive work is done to introduce constraints in correlations mining and algorithms for computing different useful correlation queries are provided. For the new concept of circumstance mining, a close relationship is set up between computing circumstance lattice and data cube. Several algorithms, including new algorithms and modification of existing data cube algorithms, are given to answer circumstance mining queries. Finally, algorithms for the dual mining on bilattices--from itemset lattice to circumstance lattice and back, or vise versa are presented to compute the Armstrong Basis for a given transaction database.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Computer Science and Software Engineering
Item Type:Thesis (Masters)
Authors:Wang, Xiaohong
Pagination:ix, 80 leaves : ill. ; 29 cm.
Institution:Concordia University
Degree Name:M. Comp. Sc.
Program:Computer Science and Software Engineering
Thesis Supervisor(s):Lakshmanan, Laks V. S.
Identification Number:QA 76.9 D343W36 2001
ID Code:1291
Deposited By: Concordia University Library
Deposited On:27 Aug 2009 17:18
Last Modified:13 Jul 2020 19:49
Related URLs:
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top