Karim, Mohammed Rezaul (1996) Coherent states of the Poincaré group, related frames and transforms. PhD thesis, Concordia University.
Preview |
Text (application/pdf)
2MBNQ25939.pdf |
Abstract
We construct here families of coherent states for the full Poincare group, for representations corresponding to mass $m>0$ and arbitrary integral or half-integral spin. Each family of coherent states is defined by an affine section in the group and constitutes a frame. The sections, in their turn, are determined by particular velocity vector fields, the latter always appearing in dual pairs. We discretize the coherent states of Poincare group in 1-space and 1-time dimensions and show that they form a discrete frame, develop a transform, similar to a windowed Fourier transform, which we call the relativistic windowed Fourier transform. We also obtain a reconstruction formula. Finally, we perform numerical computations. We evaluate the discrete frame operator numerically and present it graphically for different sections and windows. We also reconstruct some functions, compare reconstructed functions with the original ones graphically. We compare the reconstruction scheme of the relativistic windowed Fourier transform with that of the standard windowed Fourier transform.
Divisions: | Concordia University > School of Graduate Studies |
---|---|
Item Type: | Thesis (PhD) |
Authors: | Karim, Mohammed Rezaul |
Pagination: | viii, 115 leaves : ill. ; 29 cm. |
Institution: | Concordia University |
Degree Name: | Ph. D. |
Program: | Special Individualized Programme |
Date: | 1996 |
Thesis Supervisor(s): | Ali, S. Twareque |
Identification Number: | QC 6.4 C56K37 1996 |
ID Code: | 241 |
Deposited By: | lib-batchimporter |
Deposited On: | 27 Aug 2009 17:10 |
Last Modified: | 13 Jul 2020 19:46 |
Related URLs: |
Repository Staff Only: item control page