Login | Register

Dynamic testing of structures using scale models

Title:

Dynamic testing of structures using scale models

Jha, Anshuman (2004) Dynamic testing of structures using scale models. Masters thesis, Concordia University.

[thumbnail of MQ94727.pdf]
Preview
Text (application/pdf)
MQ94727.pdf - Accepted Version
5MB

Abstract

Dynamic testing is very useful in the design and development of products and systems. Although designers employ most powerful analysis tools, using the most elaborate electronic computers, actual testing is required in order to ensure the proper functioning of the designed system. For the structures that are extremely small such as the Micro Electromechanical Systems (MEMS) or that are very large such as civil and aerospace structures complex dynamic tests can be carried out on a replica of the system, called the model , made to larger or smaller scale, respectively, for reasons of economy, convenience and saving in time. Similitude theory is employed to develop the necessary similarity conditions (scaling laws) for dynamic testing of scaled structures. Scaling laws provide relationship between a full-scale structure and its small scale model, and can be used to predict the response of the prototype by performing dynamic testing on inexpensive model conveniently. Such scaled models have been extensively used in wind tunnel testing of large structures such as automobiles, buildings and aircrafts structures. The difficulty of making completely similar small scale models often leads to certain types of relaxations and distortions from exact duplication of the prototype (partial similarity). Both complete and partial similarities are discussed. These scaling laws are then validated both by carrying out finite element analysis using ANSYS 7.1, and by performing experiments in the laboratory for a simple structures. The above methodology has also been applied to the design validation of a shipboard monitor console. The console is required to isolate the monitor from the shock and vibration inputs and ensure its proper functioning. The shipboard console and its scale model have been investigated for their dynamic response subjected to sinusoidal and shock loads and a good correlation has been found between the prototype and the model.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical and Industrial Engineering
Item Type:Thesis (Masters)
Authors:Jha, Anshuman
Pagination:xvii, 125 leaves : ill. ; 29 cm.
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Mechanical and Industrial Engineering
Date:2004
Thesis Supervisor(s):Bhat, R and Sedaghati, R
Identification Number:TA 418.36 J43 2004
ID Code:8078
Deposited By: Concordia University Library
Deposited On:18 Aug 2011 18:14
Last Modified:13 Jul 2020 20:03
Related URLs:
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top