Wang, Fang (2005) On-site labor productivity estimation using neural networks. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
20MBMR10224.pdf - Accepted Version |
Abstract
This thesis presents a study of on-site labor productivity in building construction using the work sampling method. The study is based on a field investigation of a number of selected construction operations on three buildings in Montreal, Quebec, Canada. The developed models revealed related parameters' impact on labor productivity. Neural network was used as a method for the development of the models presented in this thesis. The developed models are based on the data collected using work sampling and were developed using NeuralShell2 software. The network was trained and tested using 221 data points collected from real construction projects that were performed in Montreal in a 30-month period. The models' development and validation utilize real-world data from the projects. Three types of neural network-based models were developed. The first type of models is back propagation neural network (BPNN) models associated with different settings. The fifth model has shown the best results.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Wang, Fang |
Pagination: | xvii, 200 leaves : ill. ; 29 cm. |
Institution: | Concordia University |
Degree Name: | M.A. Sc. |
Program: | Building, Civil and Environmental Engineering |
Date: | 2005 |
Thesis Supervisor(s): | Moselhi, Osama |
Identification Number: | LE 3 C66B85M 2005 W36 |
ID Code: | 8516 |
Deposited By: | Concordia University Library |
Deposited On: | 18 Aug 2011 18:27 |
Last Modified: | 13 Jul 2020 20:04 |
Related URLs: |
Repository Staff Only: item control page