Login | Register

In silico detection and prediction of glycosylation sites in the epidermal growth factor-like proteins using feed-forward neural networks

Title:

In silico detection and prediction of glycosylation sites in the epidermal growth factor-like proteins using feed-forward neural networks

Darissi Shaneh, Alireza (2006) In silico detection and prediction of glycosylation sites in the epidermal growth factor-like proteins using feed-forward neural networks. Masters thesis, Concordia University.

[thumbnail of MR20774.pdf]
Preview
Text (application/pdf)
MR20774.pdf - Accepted Version
7MB

Abstract

Biological databases are sparse, huge and redundant. Therefore, knowledge inference from those databases needs a consistent approach. Widely accepted as a most complex process of protein modification, glycosylation has been the main focus in this study. In this process a simple chain of carbohydrates attaches to a target protein at a specific amino acid, so-called glycosylation site. Epidermal Growth Factor-Like (EGFL) repeats have been the target proteins of this study because of having a particular glycosylation process. Moreover, they may associate with many type of cancer as well as other diseases. The objective of this study was to detect and predict the number of glycosylation sites in EGFL protein sequences using feed-forward neural networks. Bayesian automated regularization was exploited to prune the unnecessary weights and biases of the feed-forward neural network. The result of applying eight learning algorithms showed that One Step Secant (OSS) learning algorithm is more reliable than the others in terms of the accuracy and performance as measured in this study. The Bayesian regularized neural network outperformed OSS method according to the employed assessment measures. Compared to the existing neural detectors, Bayesian automated learning could improve the consistency of the model by 39.48%. The concept of Reduction Factor was also introduced to determine the efficiency of Bayesian automated learning quantitatively. Glycobiologists can use and validate such connectionist models to choose and study on the selected EGF-like proteins which are associated with cell malignancy.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Computer Science and Software Engineering
Item Type:Thesis (Masters)
Authors:Darissi Shaneh, Alireza
Pagination:x, 145 leaves : ill. ; 29 cm.
Institution:Concordia University
Degree Name:M. Comp. Sc.
Program:Computer Science and Software Engineering
Date:2006
Thesis Supervisor(s):Butler, Gregory
Identification Number:LE 3 C66C67M 2006 D37
ID Code:9147
Deposited By: Concordia University Library
Deposited On:18 Aug 2011 18:45
Last Modified:13 Jul 2020 20:06
Related URLs:
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top