Muise, Sylvain (2007) Density on elliptic curves. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
957kBMR34449.pdf - Accepted Version |
Abstract
An elliptic curve is an object that has both the analytic structure of a Riemann Surface, and the algebraic structure of a group. Under this group structure, we can consider the cyclic subgroup generated by an algebraic point on the curve, and ask whether this subgroup is dense in the complex points on the curve, under the usual topology on the analytic structure. We give conditions on the point in question for its multiples to be dense in the complex points on the curve. We discuss transcendence results for the Weierstrass [Weierstrass p] function, analogous to results of the same nature for the regular exponential function
Divisions: | Concordia University > Faculty of Arts and Science > Mathematics and Statistics |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Muise, Sylvain |
Pagination: | v, 29 leaves : ill. ; 29 cm. |
Institution: | Concordia University |
Degree Name: | M. Sc. |
Program: | Mathematics |
Date: | 2007 |
Identification Number: | LE 3 C66M38M 2007 M85 |
ID Code: | 975510 |
Deposited By: | Concordia University Library |
Deposited On: | 22 Jan 2013 16:09 |
Last Modified: | 13 Jul 2020 20:08 |
Related URLs: |
Repository Staff Only: item control page