Login | Register

Fredholm Determinants and Pole-free Solutions to the Noncommutative Painlevé II Equation

Title:

Fredholm Determinants and Pole-free Solutions to the Noncommutative Painlevé II Equation

Bertola, Marco and Cafasso, M. (2012) Fredholm Determinants and Pole-free Solutions to the Noncommutative Painlevé II Equation. Communications in Mathematical Physics, 309 (3). pp. 793-833. ISSN 0010-3616

[thumbnail of bertola2012c.pdf]
Preview
Text (application/pdf)
bertola2012c.pdf - Accepted Version
572kB

Official URL: http://dx.doi.org/10.1007/s00220-011-1383-x

Abstract

We extend the formalism of integrable operators à la Its-Izergin-Korepin-Slavnov to matrix-valued convolution operators on a semi–infinite interval and to matrix integral operators with a kernel of the form E T 1 (λ)E 2 (μ) λ+μ , thus proving that their resolvent operators can be expressed in terms of solutions of some specific Riemann-Hilbert problems. We also describe some applications, mainly to a noncommutative version of Painlevé II (recently introduced by Retakh and Rubtsov) and a related noncommutative equation of Painlevé type. We construct a particular family of solutions of the noncommutative Painlevé II that are pole-free (for real values of the variables) and hence analogous to the Hastings-McLeod solution of (commutative) Painlevé II. Such a solution plays the same role as its commutative counterpart relative to the Tracy–Widom theorem, but for the computation of the Fredholm determinant of a matrix version of the Airy kernel.

Divisions:Concordia University > Faculty of Arts and Science > Mathematics and Statistics
Item Type:Article
Refereed:Yes
Authors:Bertola, Marco and Cafasso, M.
Journal or Publication:Communications in Mathematical Physics
Date:2012
Digital Object Identifier (DOI):10.1007/s00220-011-1383-x
ID Code:976935
Deposited By: Danielle Dennie
Deposited On:05 Mar 2013 16:01
Last Modified:18 Jan 2018 17:43

References:

1.Balandin S.P., Sokolov V.V.: On the Painlevé test for non-abelian equations. Phys. Lett. A 246(3-4), 267–272 (1998)»

2.Bertola M.: The dependence on the monodromy data of the isomonodromic tau function. Commun. Math. Phys. 294(2), 539–579 (2010)»

3.Bertola, M., Cafasso, M.: The Riemann-Hilbert approach to the transition between the gap probabilities from the Pearcey to the Airy process. Int. Math. Res. Not., doi:10.1093/imrn/rnr066, 2011

4.Clarkson P.A., Joshi N., Pickering A.: Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach. Inverse Problems 15(1), 175–187 (1999)»

5.Dyson F.J.: Fredholm determinants and inverse scattering problems. Commun. Math. Phys. 47(2), 171–183 (1976)»

6.Ferrari P.L., Spohn H.: A determinantal formula for the GOE Tracy-Widom distribution. J. Phys. A 38(33), L557–L561 (2005)»

7.Forrester, P.J.: Log-gases and random matrices. London Math. Soc. Monograph Series 34. Princeton, NJ: Princeton University Press, 2010

8.Gelfand I., Gelfand S., Retakh V., Wilson R.L.: Quasideterminants. Adv. Math. 193(1), 56–141 (2005)»

9.Harnad J., Its A.R.: Integrable Fredholm operators and dual isomonodromic deformations. Commun. Math. Phys. 226(3), 497–530 (2002)»

10.Hastings S.P., McLeod J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rat. Mech. Anal. 73(1), 31–51 (1980)»

11.Its, A., Kapaev, A.: The Nonlinear Steepest Descent Approach to the Asymptotics of the Second Painlevé Transcendent in the complex domain. Volume 23 of Progr. Math. Phys. Boston, MA: Birkhäuser Boston, 2002

12.Its A.R., Izergin A.G., Korepin V.E., Slavnov N.A.: Differential equations for quantum correlation functions. Presented at the Conference on Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory. Int. J. Mod. Phys. B. V. 4, 1003–1037 (1990)

13.Its A.R., Kapaev A.A.: Quasi-linear stokes phenomenon for the second Painlevé transcendent. Nonlinearity 16, 363–386 (2003)»

14.Jimbo M., Miwa T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2(3), 407–448 (1981)»

15.Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III. Phys. D 4(1), 26–46 (1981/82)

16.Jimbo M., Miwa T., Ueno K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function. Phys. D 2(2), 306–352 (1981)»

17.Kajiwara K., Masuda T.: A generalization of determinant formulae for the solutions of Painlevé II and XXXIV equations. J. Phys. A 32(20), 3763–3778 (1999)»

18.Mehta, M.L.: Random matrices. Volume 142 of Pure and Applied Mathematics (Amsterdam), 3rd ed., Amsterdam: Elsevier/Academic Press, 2004

19.Palmer J.: Zeros of the Jimbo, Miwa, Ueno tau function. J. Math. Phys. 40(12), 6638–6681 (1999)»

20.Retakh V., Rubtsov V.: Noncommutative Toda chains, Hankel quasideterminants and Painlevé II equation. J. Phys. A: Math. Theor. 43, 505204 (2010)»

21.Simon, B.: Trace ideals and their applications. Volume 120 of Mathematical Surveys and Monographs 2nd ed., Providence, RI: American Mathematical Society, 2005

22.Soshnikov A.: Determinantal random point fields. Uspekhi Mat. Nauk 55(5(335)), 107–160 (2000)

23.Tracy C.A., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)»

24.Tracy C.A., Widom H.: Fredholm determinants and the mKdV/sinh-Gordon hierarchies. Commun. Math. Phys. 179(1), 1–9 (1996)»

25.Wasow, W.: Asymptotic expansions for ordinary differential equations. New York: Dover Publications Inc., 1987, reprint of the 1976 edition
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top