Bertola, Marco and Cafasso, M. (2012) Fredholm Determinants and Pole-free Solutions to the Noncommutative Painlevé II Equation. Communications in Mathematical Physics, 309 (3). pp. 793-833. ISSN 0010-3616
Preview |
Text (application/pdf)
572kBbertola2012c.pdf - Accepted Version |
Official URL: http://dx.doi.org/10.1007/s00220-011-1383-x
Abstract
We extend the formalism of integrable operators à la Its-Izergin-Korepin-Slavnov to matrix-valued convolution operators on a semi–infinite interval and to matrix integral operators with a kernel of the form E T 1 (λ)E 2 (μ) λ+μ , thus proving that their resolvent operators can be expressed in terms of solutions of some specific Riemann-Hilbert problems. We also describe some applications, mainly to a noncommutative version of Painlevé II (recently introduced by Retakh and Rubtsov) and a related noncommutative equation of Painlevé type. We construct a particular family of solutions of the noncommutative Painlevé II that are pole-free (for real values of the variables) and hence analogous to the Hastings-McLeod solution of (commutative) Painlevé II. Such a solution plays the same role as its commutative counterpart relative to the Tracy–Widom theorem, but for the computation of the Fredholm determinant of a matrix version of the Airy kernel.
Divisions: | Concordia University > Faculty of Arts and Science > Mathematics and Statistics |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Bertola, Marco and Cafasso, M. |
Journal or Publication: | Communications in Mathematical Physics |
Date: | 2012 |
Digital Object Identifier (DOI): | 10.1007/s00220-011-1383-x |
ID Code: | 976935 |
Deposited By: | Danielle Dennie |
Deposited On: | 05 Mar 2013 16:01 |
Last Modified: | 18 Jan 2018 17:43 |
References:
1.Balandin S.P., Sokolov V.V.: On the Painlevé test for non-abelian equations. Phys. Lett. A 246(3-4), 267–272 (1998)»2.Bertola M.: The dependence on the monodromy data of the isomonodromic tau function. Commun. Math. Phys. 294(2), 539–579 (2010)»
3.Bertola, M., Cafasso, M.: The Riemann-Hilbert approach to the transition between the gap probabilities from the Pearcey to the Airy process. Int. Math. Res. Not., doi:10.1093/imrn/rnr066, 2011
4.Clarkson P.A., Joshi N., Pickering A.: Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach. Inverse Problems 15(1), 175–187 (1999)»
5.Dyson F.J.: Fredholm determinants and inverse scattering problems. Commun. Math. Phys. 47(2), 171–183 (1976)»
6.Ferrari P.L., Spohn H.: A determinantal formula for the GOE Tracy-Widom distribution. J. Phys. A 38(33), L557–L561 (2005)»
7.Forrester, P.J.: Log-gases and random matrices. London Math. Soc. Monograph Series 34. Princeton, NJ: Princeton University Press, 2010
8.Gelfand I., Gelfand S., Retakh V., Wilson R.L.: Quasideterminants. Adv. Math. 193(1), 56–141 (2005)»
9.Harnad J., Its A.R.: Integrable Fredholm operators and dual isomonodromic deformations. Commun. Math. Phys. 226(3), 497–530 (2002)»
10.Hastings S.P., McLeod J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rat. Mech. Anal. 73(1), 31–51 (1980)»
11.Its, A., Kapaev, A.: The Nonlinear Steepest Descent Approach to the Asymptotics of the Second Painlevé Transcendent in the complex domain. Volume 23 of Progr. Math. Phys. Boston, MA: Birkhäuser Boston, 2002
12.Its A.R., Izergin A.G., Korepin V.E., Slavnov N.A.: Differential equations for quantum correlation functions. Presented at the Conference on Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory. Int. J. Mod. Phys. B. V. 4, 1003–1037 (1990)
13.Its A.R., Kapaev A.A.: Quasi-linear stokes phenomenon for the second Painlevé transcendent. Nonlinearity 16, 363–386 (2003)»
14.Jimbo M., Miwa T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2(3), 407–448 (1981)»
15.Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III. Phys. D 4(1), 26–46 (1981/82)
16.Jimbo M., Miwa T., Ueno K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function. Phys. D 2(2), 306–352 (1981)»
17.Kajiwara K., Masuda T.: A generalization of determinant formulae for the solutions of Painlevé II and XXXIV equations. J. Phys. A 32(20), 3763–3778 (1999)»
18.Mehta, M.L.: Random matrices. Volume 142 of Pure and Applied Mathematics (Amsterdam), 3rd ed., Amsterdam: Elsevier/Academic Press, 2004
19.Palmer J.: Zeros of the Jimbo, Miwa, Ueno tau function. J. Math. Phys. 40(12), 6638–6681 (1999)»
20.Retakh V., Rubtsov V.: Noncommutative Toda chains, Hankel quasideterminants and Painlevé II equation. J. Phys. A: Math. Theor. 43, 505204 (2010)»
21.Simon, B.: Trace ideals and their applications. Volume 120 of Mathematical Surveys and Monographs 2nd ed., Providence, RI: American Mathematical Society, 2005
22.Soshnikov A.: Determinantal random point fields. Uspekhi Mat. Nauk 55(5(335)), 107–160 (2000)
23.Tracy C.A., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)»
24.Tracy C.A., Widom H.: Fredholm determinants and the mKdV/sinh-Gordon hierarchies. Commun. Math. Phys. 179(1), 1–9 (1996)»
25.Wasow, W.: Asymptotic expansions for ordinary differential equations. New York: Dover Publications Inc., 1987, reprint of the 1976 edition
Repository Staff Only: item control page