Chen, Guangyi, Krishnan, Sridhar and Bui, Tien D. (2013) Matrix-Based Ramanujan-Sums Transforms. IEEE Signal Processing Letters, 20 (10). pp. 941-944. ISSN 1070-9908
Preview |
Text (application/pdf)
314kBbui2013.pdf - Accepted Version |
Official URL: http://dx.doi.org/10.1109/LSP.2013.2273973
Abstract
In this letter, we study the Ramanujan Sums (RS) transform by means of matrix multiplication. The RS are orthogonal in nature and therefore offer excellent energy conservation capability. The 1-D and 2-D forward RS transforms are easy to calculate, but their inverse transforms are not defined in the literature for non-even function $ ({rm mod}~ {rm M}) $. We solved this problem by using matrix multiplication in this letter.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Computer Science and Software Engineering |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Chen, Guangyi and Krishnan, Sridhar and Bui, Tien D. |
Journal or Publication: | IEEE Signal Processing Letters |
Date: | 2013 |
Digital Object Identifier (DOI): | 10.1109/LSP.2013.2273973 |
Keywords: | Fourier transform (FT) Gaussian white noise Ramanujan Sums (RS) |
ID Code: | 977893 |
Deposited By: | Danielle Dennie |
Deposited On: | 01 Oct 2013 19:39 |
Last Modified: | 18 Jan 2018 17:45 |
References:
1. S. Ramanujan "On certain trigonometric sums and their applications", Trans. Cambridge Philos. Soc., vol. 22, pp.259 -276 19182. L. Sugavaneswaran , S. Xie , K. Umapathy and S. Krishnan "Time-frequency analysis via Ramanujan sums", IEEE Signal Process. Lett., vol. 19, no. 6, pp.352 -355 2012
3. M. Planat "Ramanujan sums for signal processing of low frequency noise", Phys. Rev. E., vol. 66, 2002
4. S. Samadi , M. O. Ahmad and M. N. S. Swamy "Ramanujan sums and discrete Fourier transform", IEEE Signal Process. Lett., vol. 12, no. 4, pp.293 -296 2005
5. L. T. Mainardi , L. Pattini and S. Cerutti "Application of the Ramanujan Fourier transform for the analysis of secondary structure content in amino acid sequences", Meth. Inf. Med., vol. 46, no. 2, pp.126 -129 2007
6. L. T. Mainardi , M. Bertinelli and R. Sassi "Analysis of T-wave alternans using the Ramanujan Sums", Comput. Cardiol., vol. 35, pp.605 -608 2008
7. G. Y. Chen , S. Krishnan and T. D. Bui "Ramanujan sums for image pattern analysis", Int. J. Wavelets, Multires. Inf. Process.,
8. G. Y. Chen , S. Krishnan , W. Liu and W. F. Xie "Ramanujan sums for sparse signal analysis", Proc. Ninth Int. Conf. Intelligent Computing (ICIC), 2013
9. G. Y. Chen , S. Krishnan and W. F. Xie "Ramanujan Sums-wavelet transform for signal analysis", Proc. Int. Conf. on Wavelet Anal. and Pattern Recognition (ICWAPR), 2013
10. P. Haukkanen "Discrete Ramanujan-Fourier transform of even functions $ ({\rm mod}~{\rm r}) $", Indian J. Math. Math. Sci., vol. 3, no. 1, pp.75 -80 2007
11. T. M. Apostol "Arithmetical properties of generalized Ramanujan sums", Pacific J. of Mathematics, vol. 41, no. 2, 1972
12. I. Korkee and P. Haukkanen "On a general form of meet matrices associated with incidence functions", Linear and Multilinear Algebra, vol. 53, no. 5, pp.309 -321 2005
13. P. J. McCarthy "A generalization of Smith\'s determinant", Canad. Math. Bull., vol. 29, no. 1, pp.109 -113 1986
Repository Staff Only: item control page