Login | Register

Exchange, correlation, and scattering effects on surface plasmons in arm-chair graphene nanoribbons

Title:

Exchange, correlation, and scattering effects on surface plasmons in arm-chair graphene nanoribbons

Bahrami, M. and Vasilopoulos, P. (2017) Exchange, correlation, and scattering effects on surface plasmons in arm-chair graphene nanoribbons. Optics Express, 25 (14). pp. 16840-16853. ISSN 1094-4087

[thumbnail of vasilopoulos-2017.pdf]
Preview
Text (application/pdf)
vasilopoulos-2017.pdf - Accepted Version
Available under License Spectrum Terms of Access.
11MB

Official URL: http://dx.doi.org/10.1364/OE.25.016840

Abstract

Using Maxwell’s equations for the incoming and outgoing electromagnetic field, in interaction with a metallic arm-chair graphene nanoribbon (AGNR), and the relationship between the density-density response function and the conductivity, we study surface plasmons (SPs) in a AGNR following the Lindhard, random-phase approximation (RPA), and Hubbard approaches. For transverse magnetic (TM) modes we obtain analytical dispersion relations (DRs) valid for q ≤ kF and assess their width dependence. In all approaches we include screening. In the long-wavelength limit q → 0 there is a small but noticeable difference between the DRs of the three approaches. In this limit the respective, scattering-free conductivities differ drastically from those obtained when scattering by impurities is included. We demonstrate that the SP field is proportional to the square of the quality factor Q. The reflection amplitude shows that metallic AGNRs do not support Brewster angles. In addition, AGNRs do not support transverse electric (TE) SPs.

Divisions:Concordia University > Faculty of Arts and Science > Physics
Item Type:Article
Refereed:Yes
Authors:Bahrami, M. and Vasilopoulos, P.
Journal or Publication:Optics Express
Date:2017
Funders:
  • NSERC (GP0121756)
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.1364/OE.25.016840
ID Code:982792
Deposited By: Danielle Dennie
Deposited On:17 Aug 2017 18:58
Last Modified:18 Jan 2018 17:55

References:

1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83–91 (2010).

2. M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Reports. 41, 1–416 (2001).

3. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Advanced Materials 25, 3264–3294 (2013).

4. E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 13, 189–193 (2006).

5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

6. T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano. 8, 1086–1101 (2014). [CrossRef]

7. Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nature Photonics 10, 227–238 (2016).

8. S. Jang, E. Hwang, Y. Lee, S. Lee, and J. H. Cho, “Multifunctional Graphene Optoelectronic Devices Capable of Detecting and Storing Photonic Signals,” Nano Lett. 15, 2542–2547 (2015).

9. Y. Zhao and Y. Zhu, “Graphene-based hybrid films for plasmonic sensing,” Nanoscale. , 7, 14561–14576 (2015).

10. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photonics 6, 737–748 (2012).

11. Q. Bao and K. P. Loh, “Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices,” ACS Nano. 2, 3677–3694 (2012).

12. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nature Nanotechnology 6, 630–634 (2011).

13. A. A. Shylau, S. M. Badalyan, F. M. Peeters, and A. P. Jauho, “Electron polarization function and plasmons in metallic armchair graphene nanoribbons,” Phys. Rev. B 91, 205444 (2015).

14. D. R. Andersen and H. Raza, “Collective modes of massive Dirac fermions in armchair graphene nanoribbons,” J. Phys. Condens. Matter 25, 045303 (2013).

15. L. Brey and H. A. Fertig, “Elementary electronic excitations in graphene nanoribbons,” Phys. Rev. B 75, 125434 (2007).

16. C. E. P. Villegas, M. R. S. Tavares, G. Q. Hai, and P. Vasilopoulos, “Plasmon modes and screening in double metallic armchair graphene nanoribbons,” Phys. Rev. B 88, 165426 (2013).

17. M. Bagheri and M. Bahrami, “Plasmons in spatially separated double-layer graphene nanoribbons,” J. Appl. Phys. 115, 174301 (2014).

18. H. Bruus and K. Flensberg, Introduction to Many-Body Quantum Theory in Condensed Matter Physics (Oxford University, 2004).

19. Y. Wang and D. R. Andersen, “First-principles study of the terahertz third-order nonlinear response of metallic armchair graphene nanoribbons,” Phys. Rev. B 93, 235430 (2016).

20. Y-W Son, M. L. Cohen, and S. G. Louie, “Energy Gaps in Graphene Nanoribbons,” Phys. Rev. Lett. 97, 216803 (2006). [CrossRef]

21. G. Seol and J. Guo, “Bandgap opening in boron nitride confined armchair graphene nanoribbon,” Appl. Phys. Lett. 98, 143107 (2011).

22. G. Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L. P. Biro, and L. Tapaszto, “Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons,” Nature 514, 608–611 (2014)

23. F. J. G. Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics. 1, 135–152 (2014).

24. D. N. Basov, M. M. Fogler, A. Lanzara, Feng Wang, and Y. Zhang, “Colloquium: Graphene spectroscopy,” Rev. Mod. Phys. 86, 959 (2014).

25. Gradshteyn and Ryzhik, Tables of Integrals, Series, and Products (Academic, 2014).

26. M. Tas, Dielectric Formulation of One-Dimensional Electron Gas (Wiley, 2004).

27. V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, “Electron-Electron Interactions in Graphene: Current Status and Perspectives,” Rev. Mod. Phys. 84, 1067 (2011).

28. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8, 318 (2006).

29. S. Xiao, X. Zhu, B.H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11, 117801 (2016).

30. Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9, 093791 (2015).

31. T. Stauber, “Plasmonics in Dirac systems: from graphene to topological insulators,” J. Phys.: Cond. Matter. 26, 123201 (2014).

32. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photonics 6, 749–758 (2012).

33. A. Politano and G. Chiarello, “Plasmon modes in graphene: status and prospect,” Nanoscale 6, 10927–10940 (2014).

34. S. A. Mikhailov and D. Beba, “Nonlinear broadening of the plasmon linewidth in a graphene stripe,” New Journal of Physics. 14, 115024 (2012).

35. W. Wang and J. M. Kinaret, “Plasmons in graphene nanoribbons: Interband transitions and nonlocal effects,” Phys. Rev. B 87, 195424 (2013).

36. J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, and F. Rana, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87, 241410 (2013).

37. G. F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University, 2005)
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top