Akbari, Mohammad ORCID: https://orcid.org/0000-0002-7436-6529, Farahani, Mohammadmahdi, Sebak, Abdel-Razik and Denidni, Tayeb A. (2017) Ka-Band Linear to Circular Polarization Converter Based on Multilayer Slab With Broadband Performance. IEEE Access, 5 . pp. 17927-17937. ISSN 2169-3536
Preview |
Text (application/pdf)
1MBakbari-ieee-access-2017.pdf - Published Version Available under License Spectrum Terms of Access. |
Official URL: http://dx.doi.org/10.1109/ACCESS.2017.2746800
Abstract
In this paper, a Ka-band polarization converter is presented, which is based on multilayer slab. In order to improve impedance matching, metallic circular traces are printed periodically on each dielectric multilayer slab. Simulated results of the polarizer show that it can transform linearly polarized (LP) to circularly polarized (CP) fields over a frequency band from 23 to 35GHz (42%) with an insertion loss less than 0.5 dB. The transmitted CP wave by the polarizer is approximately robust under oblique illuminations. The polarizer is fabricated and measured by a wideband horn antenna satisfying the simulated results. Next, in order to design a high-gain CP structure around 30 GHz, an 8-element LP array antenna with Chebyshev tapered distribution is designed and integrated with the polarizer. Obviously, the antenna limits the overall bandwidth (nearly 28 to 31.5 GHz) due to the narrowband nature of the LP antenna array. When the polarizer is illuminated by an incident LP wave, the two linear components of the transmitted wave with approximately equal amplitudes and 90° phase difference on the frequency band of interest are produced. Experimental results of the proposed structure show a pure CP with a gain of 13 dBi at 30 GHz, which can be suitable for millimeter wave communication.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Akbari, Mohammad and Farahani, Mohammadmahdi and Sebak, Abdel-Razik and Denidni, Tayeb A. |
Journal or Publication: | IEEE Access |
Date: | 2017 |
Funders: |
|
Digital Object Identifier (DOI): | 10.1109/ACCESS.2017.2746800 |
Keywords: | Polarizer, Ka-band, linear, circular, polarization converter, dielectric multilayer |
ID Code: | 983213 |
Deposited By: | Danielle Dennie |
Deposited On: | 14 Nov 2017 17:17 |
Last Modified: | 18 Jan 2018 17:56 |
References:
1. M. Akbari, H. A. Ghalyon, M. Farahani, A.-R. Sebak, T. A. Denidni, "Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems", IEEE Access, vol. 5, pp. 6527-6537, May 2017.2. M. Akbari, S. Gupta, M. Farahani, A. R. Sebak, T. A. Denidni, "Gain enhancement of circularly polarized dielectric resonator antenna based on FSS superstrate for MMW applications", IEEE Trans. Antennas Propag., vol. 64, pp. 5542-5546, Dec. 2016.
3. M. Akbari, S. Gupta, M. Farahani, A. R. Sebak, T. A. Denidni, "Analytic study on CP enhancement of millimeter wave DR and patch subarray antennas", Int. J. RF Microw. Comput.-Aided Eng., vol. 27, no. 1, pp. e21053, Jan. 2017.
4. L. Li, Y. Li, Z. Wu, F. Huo, Y. Zhang, C. Zhao, "Novel polarization-reconfigurable converter based on multilayer frequency-selective surfaces", Proc. IEEE, vol. 103, no. 7, pp. 1057-1070, Jul. 2015.
5. S. M. A. M. H. Abadi, N. Behdad, "Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces", IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 525-534, Feb. 2016.
6. R. Orr, G. Goussetis, V. Fusco, "Design method for circularly polarized Fabry–Perot cavity antennas", IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 19-26, Jan. 2014.
7. L. Martinez-Lopez, J. Rodriguez-Cuevas, J. I. Martinez-Lopez, A. E. Martynyuk, "A multilayer circular polarizer based on bisected split-ring frequency selective surfaces", IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 153-156, Jan. 2014.
8. M.-A. Joyal, J.-J. Laurin, "Analysis and design of thin circular polarizers based on meander lines", IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 3007-3011, Jun. 2012.
9. P. Fei, Z. Shen, X. Wen, F. Nian, "A single-layer circular polarizer based on hybrid meander line and loop configuration", IEEE Trans. Antennas Propag., vol. 63, no. 10, pp. 4609-4614, Oct. 2015.
10. J. M. I. Alonso, G. A. Calderón, M. S. Pérez, "SIW antenna with polarizer at ku-band", IEEE Trans. Antennas Propag., vol. 63, no. 6, pp. 2782-2786, Jun. 2015.
11. X.-C. Zhu et al., "Design of a bandwidth-enhanced polarization rotating frequency selective surface", IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 940-944, Feb. 2014.
12. H. L. Zhu, S. W. Cheung, K. L. Chung, T. I. Yuk, "Linear-to-circular polarization conversion using metasurface", IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4615-4623, Sep. 2013.
13. Y. Cheng, C. Wu, Z. Z. Cheng, R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator", Prog. Electromagn. Res., vol. 155, pp. 105-113, Mar. 2016.
14. M. Mutlu, A. E. Akosman, E. Ozbay, "Broadband circular polarizer based on high-contrast gratings", Opt. Lett., vol. 37, no. 11, pp. 2094-2096, 2012.
15. J. D. Jackson, Classical Electrodynamics, Hoboken, NJ, USA:Wiley, pp. 205-207, 1999.
16. C. A. Balanis, Antenna Theory Analysis and Design, Hoboken, NJ, USA:Wiley, 1997.
17. B. Li, Z. Shen, "Three-dimensional bandpass frequency-selective structures with multiple transmission zeros", IEEE Trans. Microw. Theory Techn., vol. 61, no. 10, pp. 3578-3589, Oct. 2013.
18. A. K. Rashid, B. L. Z. Shen, "An overview of three-dimensional frequency-selective structures", IEEE Antennas Propag. Mag., vol. 56, no. 3, pp. 43-67, Jun. 2014.
19. J. D. Shumpert, "Modeling of periodic dielectric structures (electomagnetic crystals)", 2001.
20. R. E. Collin, Foundations for Microwave Engineering, New York, NY, USA:McGraw-Hill, 1992.
21. Z. Li, W. Liu, H. Cheng, S. Chen, J. Tian, "Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface", Sci. Rep., vol. 5, Dec. 2015.
22. M. Euler, V. Fusco, R. Dickie, R. Cahill, J. Verheggen, "Sub-mm wet etched linear to circular polarization FSS based polarization converters", IEEE Trans. Antennas Propag., vol. 59, no. 8, pp. 3103-3106, Aug. 2011.
23. S.-C. Gao, L.-W. Li, M.-S. Leong, T.-S. Yeo, "Wide-band microstrip antenna with an H-shaped coupling aperture", IEEE Trans. Veh. Technol., vol. 51, no. 1, pp. 17-27, Jan. 2002.
24. A. Pirhadi, H. Bahrami, J. Nasri, "Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer", IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 2101-2106, Apr. 2012.
25. R. Bayderkhani, H. R. Hassani, "Wideband and low sidelobe slot antenna fed by series-fed printed array", IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 3898-3904, Dec. 2010.
26. M. Farahani, J. Pourahmadazar, M. Akbari, M. Akbari, A. R. Sebak, T. A. Denidni, "Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall", IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2324-2327, 2017.
27. S. L. S. Yang, R. Chair, A. A. Kishk, K. F. Lee, K. M. Luk, "Study on sequential feeding networks for subarrays of circularly polarized elliptical dielectric resonator antenna", IEEE Trans. Antennas Propag., vol. 55, no. 2, pp. 321-333, Feb. 2007.
28. S. Vakilinia, B. Heidarpour, M. Cheriet, "Energy efficient resource allocation in cloud computing environments", IEEE Access, vol. 4, pp. 8544-8557, 2016.
29. S. Yan, G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator", Appl. Phys. Lett., vol. 102, no. 10, pp. 103503, Mar. 2013.
Repository Staff Only: item control page