Login | Register

High-precision micro-machining of glass for mass-personalization

Title:

High-precision micro-machining of glass for mass-personalization

Hof, Lucas Abia ORCID: https://orcid.org/0000-0002-0495-9572 (2018) High-precision micro-machining of glass for mass-personalization. PhD thesis, Concordia University.

[thumbnail of Hof_PhD_F2018.pdf]
Preview
Text (application/pdf)
Hof_PhD_F2018.pdf - Accepted Version
Available under License Spectrum Terms of Access.
5MB

Abstract

With the fourth industrial revolution manufacturing industry faces new challenges. Small batches of personalized parts, where the geometry changes per part, must be produced in an economically viable manner. In such cases of mass personalization new manufacturing technologies are required which can keep manufacturing overhead related to change of part geometries low. These processes need to address the issues of extensive calibration and tooling costs, must be able to handle complex parts and reduce production steps. According to recent studies hybrid technologies, including electrochemical technologies, are promising to address these manufacturing challenges.
At the same time, glass has fascinated and attracted much interest from both the academic and industrial world, mainly because it is optically and radio frequency transparent, chemically inert, environmentally friendly and it has excellent mechanical and thermal properties, allowing tailoring of new and dedicated applications. However, glass is a hard to machine material, due to its hardness and brittleness. Machining smooth, high-aspect ratio structures is still challenging due to long machining times, high machining costs and poor surface quality. Hybrid methods like Spark Assisted Chemical Engraving (SACE) perform well to address these issues.
Nevertheless, SACE cannot be deployed for high-precision glass mass-personalization by industry and academia, due to 1) lack of process models for glass cutting and milling, relating SACE input parameters to a desired output, 2) extensive calibration needed for tool-workpiece alignment and tool run-out elimination, 3) part specific tooling required for proper clamping of the glass workpiece to attain high precision.
In this study, SACE technology was progressively developed from a mass-fabrication technology towards a process for mass-personalization of high-precision glass parts by addressing these issues. Key was the development of 1) an (empirically validated) model for SACE cutting and milling process operations allowing direct relation of the machining input to the desired machining outcome, enabling a dramatical increase of automation across the manufacturing process workflow from desired design to establishing of machinable code containing all necessary manufacturing execution information, 2) in-situ fabrication of the needed tooling and 3) the use of low-cost rapid prototyping, eliminating high indirect machining costs and long lead times.
To show the viability of this approach two novel applications in the microtechnology field were proposed and developed using glass as substrate material and SACE technology for rapid prototyping: a) fabrication of glass imprint templates for microfabricating devices by hot embossing and b) manufacturing of glass dies for micro-forming of metal micro parts.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering
Item Type:Thesis (PhD)
Authors:Hof, Lucas Abia
Institution:Concordia University
Degree Name:Ph. D.
Program:Mechanical Engineering
Date:1 June 2018
Thesis Supervisor(s):Wüthrich, Rolf
Keywords:Industry 4.0, mass-personalization, glass micro-machining, Spark Assisted Chemical Engraving (SACE), rapid prototyping, MEMS, microfabrication, glass, advanced manufacturing, micro forming, hot embossing, micro-hole drilling
ID Code:984180
Deposited By: LUCAS ABIA HOF
Deposited On:31 Oct 2018 17:26
Last Modified:10 Sep 2019 18:17

References:

[1] “Oxford English Dictionary.” [Online]. Available: http://www.oed.com/. [Accessed: 19-Apr-2018].
[2] D. Dornfeld and D.-E. Lee, “Future of precision manufacturing,” in Precision Manufacturing, Boston, MA: Springer US, 2008, pp. 665–703.
[3] D. M. Upton, “What really makes factories flexible,” Harv. Bus. Rev., pp. 74–84, 1995.
[4] G. Pourabdollahian and G. Copani, “Market Analysis, Technological Foresight, and Business Models for Micro-manufacturing,” in Micro-Manufacturing Technologies and Their Applications: A Theoretical and Practical Guide, I. Fassi and D. Shipley, Eds. Cham: Springer International Publishing, 2017, pp. 261–291.
[5] H. Kagermann, J. Helbig, A. Hellinger, and W. Wahlster, “Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0: Deutschlands Zukunft als Produktionsstandort sichern; Abschlussbericht des Arbeitskreises Industrie 4.0,” Berlin, Frankfurt/Main, 2013.
[6] L. Ghezzi and H. G. Bock, Math for the Digital Factory. .
[7] I. Csiszár and M. Jaikumar, “From Filing and Fitting to Flexible Manufacturing: A Study in the Evolution of Process Control,” Found. Trends® Technol. Inf. Oper. Manag., vol. 1, 2005.
[8] R. DeVor and et al., “EM-SIM, End Milling Simulation Software,” ARPA/NSF Machine Tool - Agile Manufacturing Institute, University of iIlinois, Champaign-Urbana, 1996.
[9] D. Dornfeld and D.-E. Lee, “Introduction to precision manufacturing,” in Precision Manufacturing, Boston, MA: Springer US, 2008, pp. 1–35.
[10] S. Kalpakjian, Manufacturing processes for engineering materials. Reading, MA: Addison-Wesley, 1984.
[11] G. Boothroyd, Fundamentals of Metal Machining and Machine Tools. New York: McGraw-Hill, 1975.
[12] H. W. Dickinson and R. Jenkins, James Watt and the History of the Steam Engine. Clarendon, 1927.
[13] M. Berg, The Age of Manufactures, 1700-1820: Industry, Innovation and Work in Britain, 2nd ed. Routledge, 1994.
[14] P. Mantoux, The Industrial Revolution in the Eighteenth Century: An outline of the beginnings of the modern factory system in England. Taylor & Francis Ltd, 1928.
[15] J. Burke, Connections, 1st ed. Boston, MA: Little, Brown & Company, 1978.
[16] R. Schonberger, Japanese manufacturing techniques: Nine hidden lessons in simplicity. New York: The Free Press, 1982.
[17] T. Ohno, Toyota Production System: Beyond Large-Scale Production. Productivity Press, 1988.
[18] C. F. Oduoza, “Lean Thinking Constraints in Traditional Batch,” Adv. Prod. Eng. Manag., vol. 3, no. 4, pp. 181–192, 2008.
[19] P. A. McKeown, “High Precision Manufacturing and the British Economy,” Proc. Inst. Mech. Eng. Part B Manag. Eng. Manuf., vol. 200, no. 3, pp. 147–165, Aug. 1986.
[20] P. Shore and P. Morantz, “Ultra-precision: enabling our future,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 370, no. 1973, p. 3993 LP-4014, Aug. 2012.
[21] N. Taniguchi, “On the Basic Concept of Nano-Technology,” Proc. Intl. Conf. Prod. London, 1974, 1974.
[22] W. Thomson, “Electrical units of measurement,” Pop. Lect. Addresses, vol. 1, no. a lecture delivered at the Institution of Civil Engineers, London (3rd May 1883), p. 73, 1889.
[23] G. V. Shirley and R. Jaikumar, “Turing machines and Gutenberg technologies: the postindustrial marriage,” vol. 1, pp. 36–43, 1988.
[24] T. Moriwaki, “Intelligent machine tool: perspective and themes for future development,” ASME/PED, Manuf. Sci. Eng., vol. 68, no. 2, pp. 841–849, 1994.
[25] T. Moriwaki and K. Shirase, “Intelligent machine tools: current status and evolutional architecture,” Int. J. Manuf. Technol. Manag., vol. 9, no. 3/4, pp. 204–218, 2006.
[26] D. Dornfeld and D.-E. Lee, “Precision manufacturing applications and challenges,” in Precision Manufacturing, Boston, MA: Springer US, 2008, pp. 555–663.
[27] K. Schwab, The Fourth Industrial Revolution, First edit. New York: Crown Business, 2017.
[28] M. Brettel, M. Klein, and N. Friederichsen, “The Relevance of Manufacturing Flexibility in the Context of Industrie 4.0,” Procedia CIRP, vol. 41, pp. 105–110, 2016.
[29] P. R. Spena, P. Holzner, E. Rauch, R. Vidoni, and D. T. Matt, “Requirements for the Design of Flexible and Changeable Manufacturing and Assembly Systems: A SME-survey,” Procedia CIRP, vol. 41, pp. 207–212, 2016.
[30] M. Lafou, L. Mathieu, S. Pois, and M. Alochet, “Manufacturing System Flexibility: Product Flexibility Assessment,” Procedia CIRP, vol. 41, pp. 99–104, 2016.
[31] M. Cantamessa and C. Capello, “Flexibility in Manufacturing -- An Empirical Case-Study Research,” in Design of Flexible Production Systems: Methodologies and Tools, T. Tolio, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 19–40.
[32] B. J. Pine II, Mass Customization: The New Frontier in Business Competition. Boston, MA: Harvard Business School Press, 1993.
[33] G. Da Silveira, D. Borenstein, and H. S. Fogliatto, “Mass customization : Literature review and research directions,” vol. 72, no. 49, 2001.
[34] N. E. Bingham, “Toffler, Alvin. Future shock. New York: Bantam Books, Inc., 1971 (540 pages),” Sci. Educ., vol. 56, no. 3, pp. 438–440, Jul. 1972.
[35] D. Gerwin, “Manufacturing Flexibility: A Strategic Perspective,” Manage. Sci., vol. 39, no. 4, pp. 395–410, 1993.
[36] K. Mahmood, T. Karaulova, T. Otto, and E. Shevtshenko, “Performance Analysis of a Flexible Manufacturing System (FMS),” Procedia CIRP, vol. 63, pp. 424–429, 2017.
[37] A. Oke, “A framework for analysing manufacturing flexibility,” Int. J. Oper. Prod. Manag., vol. 25, no. 10, pp. 973–996, 2005.
[38] Y. Koren, S. J. Hu, P. Gu, and M. Shpitalni, “Open-architecture products,” CIRP Ann. - Manuf. Technol., vol. 62, no. 2, pp. 719–729, 2013.
[39] D. Mourtzis and M. Doukas, “Design and planning of manufacturing networks for mass customisation and personalisation: Challenges and outlook,” Procedia CIRP, vol. 19, no. C, pp. 1–13, 2014.
[40] Deloitte, “Industry 4.0. Challenges and solutions for the digital transformation and use of exponential technologies,” Deloitte, pp. 1–30, 2015.
[41] World Economic Forum, “Manufacturing Our Future - Cases on the Future of Manufacturing,” White Pap., no. May, 2016.
[42] M. Hankel and B. Rexroth, “The Reference Architectural Model Industrie 4.0 (RAMI 4.0),” ZWEI Die Elektroind., vol. 1, no. April, pp. 1–2, 2015.
[43] K.-D. Thoben, S. Wiesner, and T. Wuest, “‘Industrie 4.0’ and Smart Manufacturing – A Review of Research Issues and Application Examples,” Int. J. Autom. Technol., vol. 11, no. 1, pp. 4–16, 2017.
[44] P. Sykes, “Advanced versus Smart Manufacturing in Aerospace and Defense,” Aerospace & Defense Manufacturing 2016, Supplement to Advanced Manufacturing, Society of Manufacturing Engineers (SME), pp. 134–135, 2016.
[45] Siemens AG, “Digitalization in machine building - Twins with potential,” The Magazine, Oct-2017.
[46] E. Wallace and F. Riddick, “Panel on Enabling Smart Manufacturing,” 2013.
[47] M. Peshkin and J. E. Colgate, “Cobots,” Ind. Robot Int. J. Robot. Res. Appl., vol. 26, no. 5, pp. 335–341, 1999.
[48] D. Thomas and S. Gilbert, “Costs and Cost Effectiveness of Additive Manufacturing - A Literature Review and Discussion,” NIST Spec. Publ., vol. 1176, pp. 1–77, 2014.
[49] S. J. Hu, “Evolving paradigms of manufacturing: From mass production to mass customization and personalization,” Procedia CIRP, vol. 7, pp. 3–8, 2013.
[50] D. Brander, A. Bærentzen, A. Evgrafov, J. Gravesen, S. Markvorsen, T. B. Nørbjerg, P. Nørtoft, and K. Steenstrup, “Hot Blade Cuttings for the Building Industries,” in Math for the Digital Factory, L. Ghezzi, D. Hömberg, and C. Landry, Eds. Cham: Springer International Publishing, 2017, pp. 253–272.
[51] T. Kellner, “The FAA Cleared the First 3D Printed Part to Fly in a Commercial Jet Engine from GE,” 2015.
[52] R. Hudson, “Hybrid Manufacturing Opens Door to New Manufacturing Future,” Aerospace & Defense Manufacturing, Supplement to Advanced Manufacturing, Society of Manufacturing Engineers (SME), p. 47, 2016.
[53] M. Lusic, M. Wimmer, C. Maurer, and R. Hornfeck, “Engineering framework for enabling mass customisation of curvilinear panels with large surfaces by using pin-type tooling,” Procedia CIRP, vol. 37, pp. 265–270, 2015.
[54] H. Gaub, “Customization of mass-produced parts by combining injection molding and additive manufacturing with Industry 4.0 technologies,” Reinf. Plast., vol. 60, no. 6, pp. 401–404, 2016.
[55] C. Kaiser, T. V. Fischer, T. Schmeltzpfenning, M. Stöhr, and A. Artschwager, “Case study: Mass customisation of individualized orthotics - The FASHION-ABLE virtual development and production framework,” Procedia CIRP, vol. 21, pp. 105–110, 2014.
[56] N. Jun and J. Lee, “Emerging and Disruptive Technologies for the Future of Manufacturing,” Case study no. 7, World Econ. Forum, Glob. Agenda Counc. Futur. Manuf., pp. 0–3, 2015.
[57] J. Lorincz, “Hybrid machines make parts using the brand new and tried-and-true,” Manufacturing Engineering, Publication of SME, pp. 66–70, Apr-2018.
[58] “Metalfab1 - Additive Industries.” [Online]. Available: https://additiveindustries.com/systems/metalfab1. [Accessed: 25-Apr-2018].
[59] B. Brune, “Seven key benefits emanating from tech in Trumpf’s just-built smart factory,” Smart Manufacturing, Publication of SME, pp. 8–13, Mar-2018.
[60] R. Wuthrich, L. A. Hof, J. D. Abou Ziki, G. Cusanelli, and P. Thibaut, “Spark Assisted Chemical Engraving Machine, A workpiece machined by the machine, and a process related thereof,” WO 2017/064583 A1, 2017.
[61] N. Kawahara, T. Suto, T. Hirano, Y. Ishikawa, T. Kitahara, N. Ooyama, and T. Ataka, “Microfactories; new applications of micromachine technology to the manufacture of small products,” Microsyst. Technol., vol. 3, no. 2, pp. 37–41, Feb. 1997.
[62] Y. Okazaki, N. Mishima, and K. Ashida, “Microfactory—Concept, History, and Developments,” J. Manuf. Sci. Eng., vol. 126, no. 4, pp. 837–844, Feb. 2005.
[63] T. Kitahara, “Microfactory and microlathe,” in International Workshop on Microfactories, 1998, pp. 1–8.
[64] D. Huo, K. Cheng, and F. Wardle, “Design of Precision Machines,” in Machining Dynamics: Fundamentals, Applications and Practices, K. Cheng, Ed. London: Springer London, 2009, pp. 283–321.
[65] D. Dornfeld and D.-E. Lee, “Process planning for precision manufacturing,” in Precision Manufacturing, Boston, MA: Springer US, 2008, pp. 425–453.
[66] J. M. Stein and D. A. Dornfeld, “Integrated Design and Manufacturing for Precision Mechanical Components,” in Integrated Design and Manufacturing in Mechanical Engineering, 1997, pp. 367–376.
[67] H. Nakazawa, Principles of precision engineering; translated by Ryu Takeguchi. New York: Oxford University Press Oxford, 1994.
[68] D. Dornfeld and D.-E. Lee, “Machine design for precision manufacturing,” in Precision Manufacturing, Boston, MA: Springer US, 2008, pp. 37–48.
[69] R. E. DeVor, T.-H. Chang, and J. W. Sutherland, Statistical Quality Design and Control. New York: Mcmillan, 1992.
[70] E. Le Bourhis, Glass, Mechanics and Technology. Wiley-VCH, 2014.
[71] D. Hèulsenberg, A. Harnisch, and A. Bismarck, Microstructuring of Glasses. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
[72] G. M. Whitesides, “The origins and the future of microfluidics.,” Nature, vol. 442, no. 7101, pp. 368–373, 2006.
[73] N.-T. Nguyen and S. T. Wereley, Fundamentals and applications of microfluidics, Second edi. Boston, London: Artech House integrated microsystems series, 2006.
[74] H. A. Stone and S. Kim, “Microfluidics : Basic Issues , Applications , and Challenges,” AIChE J., vol. 47, no. 6, pp. 1250–1254, 2001.
[75] D. Sinton, “Energy: the microfluidic frontier.,” Lab Chip, vol. 14, no. 17, 2014.
[76] “SCP Science.” [Online]. Available: http://www.scpscience.com/. [Accessed: 24-Apr-2018].
[77] I. P. Prikhodko, S. A. Zotov, A. A. Trusov, and A. M. Shkel, “Microscale glass-blown three-dimensional spherical shell resonators,” J. Microelectromechanical Syst., vol. 20, no. 3, pp. 691–701, 2011.
[78] D. T. Nguyen, C. Meyers, T. D. Yee, N. A. Dudukovic, J. F. Destino, C. Zhu, E. B. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla-Spears, “3D-Printed Transparent Glass,” Adv. Mater., vol. 29, no. 26, pp. 1–5, 2017.
[79] F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature, vol. 544, no. 7650, pp. 337–339, 2017.
[80] D. J. Guckenberger, T. E. de Groot, A. M. D. Wan, D. J. Beebe, and E. W. K. Young, “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices,” Lab Chip, vol. 15, no. 11, pp. 2364–2378, 2015.
[81] R. Wüthrich and J. D. Abou Ziki, Micromachining Using Electrochemical Discharge Phenomenon. Elsevier, 2015.
[82] N. Van Toan, M. Toda, and T. Ono, “An investigation of processes for glass micromachining,” Micromachines, vol. 7, no. 3, pp. 19–22, 2016.
[83] L. A. Hof and J. A. Ziki, “Micro-hole drilling on glass substrates-A review,” Micromachines, vol. 8, no. 2, pp. 1–23, 2017.
[84] K. Kolari, V. Saarela, and S. Franssila, “Deep plasma etching of glass for fluidic devices with different mask materials,” J. Micromechanics Microengineering, vol. 18, no. 6, p. 064010, 2008.
[85] C. Iliescu, B. Chen, and J. Miao, “On the wet etching of Pyrex glass,” Sensors Actuators, A Phys., vol. 143, no. 1, pp. 154–161, 2008.
[86] C. Liu and X. Xu, “Cyber-physical Machine Tool - The Era of Machine Tool 4.0,” Procedia CIRP, vol. 63, pp. 70–75, 2017.
[87] N. P. Bansal and R. H. Doremus, “Handbook of Glass Properties,” in Handbook of Glass Properties, 1st Editio., San Diego: Academic Press, 2013, p. 680.
[88] Apple Inc., “iPhone 8 introduces an all‑new glass design.” [Online]. Available: https://www.apple.com/ca/iphone-8/. [Accessed: 18-May-2018].
[89] M. Töpper, I. Ndip, R. Erxleben, L. Brusberg, N. Nissen, H. Schröder, H. Yamamoto, G. Todt, and H. Reichl, “3-D Thin film interposer based on TGV (Through Glass Vias): An alternative to Si-interposer,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), 2010, pp. 66–73.
[90] B. Sawyer, B. C. Chou, J. Tong, W. Vis, K. Panayappan, S. Deng, H. Tournier, V. Sundaram, and R. Tummala, “Design and Demonstration of 2.5D Glass Interposers as a Superior Alternative to Silicon Interposers for 28 Gbps Signal Transmission,” in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), 2016, pp. 972–977.
[91] Swift Glass Company, “Industry-Compliant Glass Drilling.” [Online]. Available: https://www.swiftglass.com/glass-drilling. [Accessed: 18-May-2018].
[92] J. Voldman, M. L. Gray, and M. A. Schmidt, “Microfabrication in biology and medicine.,” Annu. Rev. Biomed. Eng., vol. 1, pp. 401–425, 1999.
[93] D. Sarvela, “Overview of glass micro machining processes for MEMS applications,” MEMS Journal, 2010. [Online]. Available: http://www.memsjournal.com/2010/11/overview-of-glass-micro-machining-processes-for-mems-applications.html.
[94] C. Iliescu, F. E. H. Tay, and J. Miao, “Strategies in deep wet etching of Pyrex glass,” Sensors Actuators, A Phys., vol. 133, no. 2 SPEC. ISS., pp. 395–400, 2007.
[95] S. Takahashi, K. Horiuchi, K. Tatsukoshi, M. Ono, N. Imajo, and T. Mobely, “Development of Through Glass Via (TGV) formation technology using electrical discharging for 2.5/3D integrated packaging,” Proc. - Electron. Components Technol. Conf., pp. 348–352, 2013.
[96] S. Yoshida, “AGC Succeeds in Developing Micro Hole Drilling Processing Technology for Ultra-thin Glass with a Thickness in the Order of Microns — Toward Application for Laminated Semiconductor Components —,” Asahi Glas. Co., Ltd., pp. 2–4, 2012.
[97] A. Tseng, Y. T. Chen, C. L. Chao, K. J. Ma, and T. P. Chen, “Recent developments on microablation of glass materials using excimer lasers,” Opt. Lasers Eng., vol. 45, no. 10, pp. 975–992, 2007.
[98] A. Ghobeity, H. Getu, M. Papini, and J. K. Spelt, “Surface evolution models for abrasive jet micromachining of holes in glass and polymethylmethacrylate (PMMA),” J. Micromechanics Microengineering, vol. 17, no. 11, pp. 2175–2185, 2007.
[99] R. Wüthrich and V. Fascio, “Machining of non-conducting materials using electrochemical discharge phenomenon - An overview,” Int. J. Mach. Tools Manuf., vol. 45, no. 9, pp. 1095–1108, 2005.
[100] C. K. Fredrickson and Z. H. Fan, “Macro-to-micro interfaces for microfluidic devices,” Lab Chip, vol. 4, no. 6, pp. 526–533, 2004.
[101] Y. Temiz, R. D. Lovchik, G. V. Kaigala, and E. Delamarche, “Lab-on-a-chip devices: How to close and plug the lab?,” Microelectron. Eng., vol. 132, pp. 156–175, 2015.
[102] L. Brusberg, M. Queisser, C. Gentsch, H. Schröder, and K.-D. Lang, “Advances in CO2-Laser Drilling of Glass Substrates,” Phys. Procedia, vol. 39, no. Ic, pp. 548–555, 2012.
[103] R. Delmdahl and R. Paetzel, “Laser Drilling of High-Density Through Glass Vias (TGVs) for 2.5D and 3D Packaging,” J. Microelectron. Packag. Soc., vol. 21, no. 2, pp. 53–57, 2014.
[104] S. Karimelahi, L. Abolghasemi, and P. R. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys. A Mater. Sci. Process., vol. 114, no. 1, pp. 91–111, 2014.
[105] S. Z. Chavoshi and X. Luo, “Hybrid micro-machining processes: A review,” Precis. Eng., vol. 41, pp. 1–23, 2015.
[106] P. Cardoso and J. P. Davim, “a Brief Review on Micromachining of Materials,” vol. 30, pp. 98–102, 2012.
[107] D. E. Brehl and T. A. Dow, “Review of vibration-assisted machining,” Precis. Eng., vol. 32, no. 3, pp. 153–172, 2008.
[108] B. Lauwers, F. Klocke, A. Klink, A. E. Tekkaya, R. Neugebauer, and D. Mcintosh, “Hybrid processes in manufacturing,” CIRP Ann. - Manuf. Technol., vol. 63, no. 2, pp. 561–583, 2014.
[109] S. P. Leo Kumar, J. Jerald, S. Kumanan, and R. Prabakaran, “A Review on Current Research Aspects in Tool-Based Micromachining Processes,” Mater. Manuf. Process., vol. 29, no. 11–12, pp. 1291–1337, 2014.
[110] C. Iliescu, H. Taylor, M. Avram, J. Miao, and S. Franssila, “A practical guide for the fabrication of microfluidic devices using glass and silicon,” Biomicrofluidics, vol. 6, no. 1, pp. 16505–1650516, 2012.
[111] A. K. Jain and P. M. Pandey, “Study of Peck drilling of borosilicate glass with µRUM process for MEMS,” J. Manuf. Process., vol. 22, pp. 134–150, 2016.
[112] H.-H. Kim, S. Chung, S.-C. Kim, W.-H. Jee, and S.-C. Chung, “Condition Monitoring of Micro-Drilling Processes on Glass by using Machine Vision,” in Proceedings of the ASPE, 2006, vol. 21, pp. 535–538.
[113] S. T. Chen, Z. H. Jiang, Y. Y. Wu, and H. Y. Yang, “Development of a grinding-drilling technique for holing optical grade glass,” Int. J. Mach. Tools Manuf., vol. 51, no. 2, pp. 95–103, 2011.
[114] B. J. Park, Y. J. Choi, and C. N. Chu, “Prevention of Exit Crack in Micro Drilling of Soda-Lime Glass,” CIRP Ann. - Manuf. Technol., vol. 51, no. 1, pp. 347–350, 2002.
[115] D. Solignac, a. Sayah, S. Constantin, R. Freitag, and M. a M. Gijs, “Powder blasting for the realisation of microchips for bio-analytic applications,” Sensors Actuators, A Phys., vol. 92, no. 1–3, pp. 388–393, 2001.
[116] E. Belloy, a. Sayah, and M. a M. Gijs, “Oblique powder blasting for three-dimensional micromachining of brittle materials,” Sensors Actuators, A Phys., vol. 92, no. 1–3, pp. 358–363, 2001.
[117] H. Wensink, J. W. Berenschot, H. V. Jansen, and M. C. Elwenspoek, “High resolution powder blast micromachining,” Proc. IEEE Thirteen. Annu. Int. Conf. Micro Electro Mech. Syst. (Cat. No.00CH36308), pp. 769–774, 2000.
[118] H. Wensink, “Fabrication of microstructures by Powder Blasting,” University of Twente, The Netherlands, 2002.
[119] S. Schlautmann, H. Wensink, R. Schasfoort, M. Elwenspoek, and A. Van Den Berg, “Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensors,” J. Micromechanics Microengineering, vol. 11, no. 4, pp. 386–389, 2001.
[120] L. Zhang, T. Kuriyagawa, Y. Yasutomi, and J. Zhao, “Investigation into micro abrasive intermittent jet machining,” Int. J. Mach. Tools Manuf., vol. 45, no. 7–8, pp. 873–879, Jun. 2005.
[121] H. Nouraei, K. Kowsari, J. K. Spelt, and M. Papini, “Surface evolution models for abrasive slurry jet micro-machining of channels and holes in glass,” Wear, vol. 309, no. 1–2, pp. 65–73, 2014.
[122] K. Kowsari, H. Nouraei, D. F. James, J. K. Spelt, and M. Papini, “Abrasive slurry jet micro-machining of holes in brittle and ductile materials,” J. Mater. Process. Technol., vol. 214, no. 9, pp. 1909–1920, 2014.
[123] A. Schorderet, E. Deghilage, and K. Agbeviade, “Tool type and hole diameter influence in deep ultrasonic drilling of micro-holes in glass,” Procedia CIRP, vol. 6, pp. 565–570, 2013.
[124] C. Zhang, R. Rentsch, and E. Brinksmeier, “Advances in micro ultrasonic assisted lapping of microstructures in hard–brittle materials: a brief review and outlook,” Int. J. Mach. Tools Manuf., vol. 45, no. 7–8, pp. 881–890, Jun. 2005.
[125] B. H. Yan, a. C. Wang, C. Y. Huang, and F. Y. Huang, “Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining,” Int. J. Mach. Tools Manuf., vol. 42, no. 10, pp. 1105–1112, 2002.
[126] K. I. Ishikawa, H. Suwabe, T. Nishide, and M. Uneda, “Study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials,” Precis. Eng., vol. 22, no. 4, pp. 196–205, 1998.
[127] K. Egashira and T. Masuzawa, “Microultrasonic Machining by the Application of Workpiece Vibration,” CIRP Ann. - Manuf. Technol., vol. 48, no. 1, pp. 131–134, Jan. 1999.
[128] A. A. Guzzo, P.L., Shinohara, A.H., Raslan, “A Comparative Study on Ultrasonic Machining of Hard and Brittle Materials,” in COBEF 2003 – II Brazilian Manufacturing Congress, 2003.
[129] K. Egashira, K. Mizutani, and T. Nagao, “Ultrasonic Vibration Drilling of Microholes in Glass,” CIRP Ann. - Manuf. Technol., vol. 51, no. 1, pp. 339–342, Jan. 2002.
[130] K. Egashira, R. Kumagai, R. Okina, K. Yamaguchi, and M. Ota, “Drilling of microholes down to 10 μm in diameter using ultrasonic grinding,” Precis. Eng., vol. 38, no. 3, pp. 605–610, 2014.
[131] C. Khan Malek, L. Robert, J. J. Boy, and P. Blind, “Deep microstructuring in glass for microfluidic applications,” Microsyst. Technol., vol. 13, no. 5–6, pp. 447–453, 2007.
[132] K. Okazaki, S. Torii, T. Makimura, H. Niino, K. Murakami, D. Nakamura, a. Takahashi, and T. Okada, “Sub-wavelength micromachining of silica glass by irradiation of CO 2 laser with Fresnel diffraction,” Appl. Phys. A Mater. Sci. Process., vol. 104, no. 2, pp. 593–599, 2011.
[133] A. K. Dubey and V. Yadava, “Laser beam machining—a review,” Int. J. Mach. Tools Manuf., vol. 48, no. 6, pp. 609–628, 2008.
[134] J. Bovatsek and R. S. Patel, “DPSS Lasers Overcome Glass Process Challenges,” Photonics Spectra, 2012. [Online]. Available: http://www.photonics.com.
[135] Femtoprint SA, “3D printing for glass microdevices.” [Online]. Available: www.femtoprint.ch.
[136] Fraunhofer ILT, “Selective Laser Etching of Glass and Sapphire.” [Online]. Available: http://www.ilt.fraunhofer.de/en/publication-and-press/brochures/brochure_Selective_Laser_ Etching_of_Glass_and_Sapphire.html.
[137] D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A Mater. Sci. Process., vol. 79, no. 3, pp. 605–612, 2004.
[138] C. K. Chung, S. L. Lin, H. Y. Wang, T. K. Tan, K. Z. Tu, and H. F. Lung, “Fabrication and simulation of glass micromachining using CO2 laser processing with PDMS protection,” Appl. Phys. A, vol. 113, no. 2, pp. 501–507, 2013.
[139] S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, and D. Low, “Precision glass machining, drilling and profile cutting by short pulse lasers,” Thin Solid Films, vol. 477, no. 1–2, pp. 216–221, 2005.
[140] A. Ran, L. Yan, D. Yan-Ping, F. Ying, Y. Hong, and G. Qi-Huang, “Laser Micro-Hole Drilling of Soda-Lime Glass with Femtosecond Pulses,” Chinese Phys. Lett., vol. 21, no. 12, pp. 2465–2468, 2004.
[141] M. Castillejo, P. M. Ossi, and L. Zhigilei, Lasers in Materials Science. Springer, 2014.
[142] L. Brusberg, H. Schroder, M. Topper, and H. Reichl, “Photonic System-in-Package technologies using thin glass substrates,” Electron. Packag. Technol. Conf. 2009. EPTC ’09. 11th, 2009.
[143] P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of ‘transparent’ fused silica with 1-ps pulses and pulse trains,” Proc. SPIE, vol. 3616, no. January, pp. 148–155, 1999.
[144] Y. Wu, W. Jia, C. Y. Wang, M. Hu, X. Ni, and L. Chai, “Micro-hole fabricated inside FOTURAN glass using femtosecond laser writing and chemical etching,” Opt. Quantum Electron., vol. 39, no. 14, pp. 1223–1229, 2007.
[145] Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Lukyanchuk, and Z. B. Wang, “Near-field enhanced femtosecond laser nano-drilling of glass substrate,” J. Alloys Compd., vol. 449, no. 1–2, pp. 246–249, 2008.
[146] H. Huang, L. Yang, and J. Liu, “Micro-hole drilling and cutting using femtosecond fiber laser,” Opt. Eng., vol. 53, no. 5, p. 051513, 2014.
[147] I. Kono, A. Nakanishi, S. Warisawa, and M. Mitsuishi, “Study on Non-Crack Laser Machining of Glass by using Absorbent Powder,” in American Society Precision Engineering Proceedings, 2005, pp. 1793–1997.
[148] D. Basting and G. Marowsky, Excimer laser technology. 2005.
[149] N. Rivzi, “Micro Manufacturing with lasers,” Med-Tech Innovation, pp. 16–21, 2012.
[150] Corning, “Corning Gorilla Glass.” [Online]. Available: https://www.corning.com/gorillaglass/worldwide/en.html.
[151] C. K. Chung and S. L. Lin, “CO2 laser micromachined crackless through holes of Pyrex 7740 glass,” Int. J. Mach. Tools Manuf., vol. 50, no. 11, pp. 961–968, 2010.
[152] Fraunhofer Institute For Reliability And Microintegration IZM, “CO2 -Laser-Drilling of Through- Glass Vias (TGVs).”
[153] Mitsubishi Electric Corporation, “Mitsubishi Electric Develops Micro Glass-processing Technology Incorporating Pulsed CO 2 Laser,” 2014.
[154] B. Keiper, H. Exner, U. Löschner, and T. Kuntze, “Drilling of glass by excimer laser mask projection technique,” J. Laser Appl., vol. 12, no. 5, p. 189, 2000.
[155] C. Iliescu, B. Chen, and J. Miao, “Deep wet etching-through 1mm pyrex glass wafer for microfluidic applications,” in Micro Electro Mechanical Systems, 2007. MEMS. IEEE 20th International Conference on, 2007, pp. 393–396.
[156] N. Fertig, C. Meyer, R. H. Blick, C. Trautmann, and J. C. Behrends, “Microstructured glass chip for ion-channel electrophysiology.,” Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., vol. 64, no. 4 Pt 1, p. 040901, 2001.
[157] C. Iliescu, J. Jing, F. E. H. Tay, J. Miao, and T. Sun, “Characterization of masking layers for deep wet etching of glass in an improved HF/HCl solution,” Surf. Coatings Technol., vol. 198, no. 1–3, pp. 314–318, 2005.
[158] T. Sugita, K. Tsujino, and M. Matsumura, “Making Microholes in Glass by Electrochemical Local Acidification of Fluoride-Containing Solution,” ECS J. Solid State Sci. Technol., vol. 1, no. 1, pp. P1–P4, 2012.
[159] X. Li, T. Abe, Y. Liu, and M. Esashi, “Fabrication of high-density electrical feed-throughs by deep-reactive-ion etching of Pyrex glass,” J. Microelectromechanical Syst., vol. 11, no. 6, pp. 625–630, 2002.
[160] J. H. Park, N.-E. Lee, J. Lee, J. S. Park, and H. D. Park, “Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas,” Microelectron. Eng., vol. 82, no. 2, pp. 119–128, Oct. 2005.
[161] T. Akashi and Y. Yoshimura, “Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask,” J. Micromechanics Microengineering, vol. 16, no. 5, p. 1051, 2006.
[162] P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum, vol. 55, no. 3–4, pp. 191–196, Dec. 1999.
[163] K. Kolari, “Deep plasma etching of glass with a silicon shadow mask,” Sensors Actuators, A Phys., vol. 141, no. 2, pp. 677–684, 2008.
[164] X. Li, T. Abe, and M. Esashi, “Deep reactive ion etching of Pyrex glass using SF6 plasma,” Sensors Actuators, A Phys., vol. 87, no. 3, pp. 139–145, 2001.
[165] S. Queste, R. Salut, S. Clatot, J. Y. Rauch, and C. G. Khan Malek, “Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding,” Microsyst. Technol., vol. 16, no. 8–9, pp. 1485–1493, 2010.
[166] B. Lauwers, “Surface integrity in hybrid machining processes,” Procedia Eng., vol. 19, pp. 241–251, 2011.
[167] U. Heisel, R. Eisseler, R. Eber, J. Wallaschek, J. Twiefel, and M. Huang, “Ultrasonic-assisted machining of stone,” Prod. Eng., vol. 5, no. 6, pp. 587–594, 2011.
[168] J. Gan, X. Wang, M. Zhou, B. Ngoi, and Z. Zhong, “Ultraprecision Diamond Turning of Glass with Ultrasonic Vibration,” Int. J. Adv. Manuf. Technol., vol. 21, no. 12, pp. 952–955, 2003.
[169] F. Klocke and O. Rubenach, “Ultrasonic-assisted diamond turning of glass and steel,” Ind. Diam. Rev., pp. 229–239, 2000.
[170] T. Moriwaki, E. Shamoto, and K. Inoue, “Ultraprecision ductile cutting of glass by applying ultrasonic vibration,” CIRP Ann. - Manuf. Technol., vol. 41, 1992.
[171] R. Malhotra, I. Saxena, K. Ehmann, and J. Cao, “Laser-induced plasma micro-machining (LIPMM) for enhanced productivity and flexibility in laser-based micro-machining processes,” CIRP Ann. - Manuf. Technol., vol. 62, no. 1, pp. 211–214, 2013.
[172] K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A, vol. 372, no. 1–2, pp. 145–162, 2004.
[173] J. Choi, B. Jeon, and B. Kim, “Chemical-assisted ultrasonic machining of glass,” J. Mater. Process. Technol., vol. 191, pp. 153–156, 2007.
[174] T. Tateishi, N. Yoshihara, J. Yan, and T. Kuriyagawa, “Study on electrorheological fluid-assisted microultrasonic machining,” Int. J. Abras. Technol., vol. 2, no. 1, pp. 70–82, 2009.
[175] T. Tateishi, N. Yoshihara, J. W. Yan, and T. Kuriyagawa, “Fabrication of High-Aspect Ratio Micro Holes on Hard Brittle Materials -Study on Electrorheological Fluid-Assisted Micro Ultrasonic Machining-,” in Key Engineering Materials, 2009, vol. 389–390, pp. 264–270.
[176] T. Tateishi, K. Shimada, N. Yoshihara, J. W. Yan, and T. Kuriyagawa, “Effect of Electrorheological Fluid Assistance on Micro Ultrasonic Machining,” Adv. Mater. Res., vol. 69–70, pp. 148–152, 2009.
[177] A. Schubert, H. Zeidler, M. H. Oschätzchen, J. Schneider, and M. Hahn, “Enhancing Micro-EDM using Ultrasonic Vibration and Approaches for Machining of Nonconducting Ceramics,” Strojniški Vestn. - J. Mech. Eng., vol. 59, no. 3, pp. 156–164, 2013.
[178] N. Mohri, Y. Fukuzawa, T. Tani, N. Saito, and K. Furutani, “Assisting Electrode Method for Machining Insulating Ceramics,” {CIRP} Ann. - Manuf. Technol., vol. 45, no. 1, pp. 201–204, 1996.
[179] J. Edelmann, C. Worsch, A. Schubert, and C. Rüssel, “Micro structuring of inorganic glass by hot embossing of coated glass wafers,” Microsyst. Technol., vol. 16, no. 4, pp. 553–560, 2010.
[180] B.-H. Yan, C.-T. Yang, F.-Y. Huang, and Z.-H. Lu, “Electrophoretic deposition grinding (EPDG) for improving the precision of microholes drilled via ECDM,” J. Micromechanics Microengineering, vol. 17, no. 2, pp. 376–383, 2007.
[181] B. R. Sarkar, B. Doloi, and B. Bhattacharyya, “Parametric analysis on electrochemical discharge machining of silicon nitride ceramics,” Int. J. Adv. Manuf. Technol., vol. 28, no. 9, pp. 873–881, 2006.
[182] M. R. Razfar, J. Ni, A. Behroozfar, and S. Lan, “An investigation on Electrochemical Discharge micro-drilling of glass,” in ASME 2013 International Manufacturing Science and Engineering Conference Collocated with the 41st North American Manufacturing Research Conference, MSEC 2013, vol. 2, 2013.
[183] D. J. Kim, Y. Ahn, S. H. Lee, and Y. K. Kim, “Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass,” Int. J. Mach. Tools Manuf., vol. 46, no. 10, pp. 1064–1067, 2006.
[184] E. S. Lee, D. Howard, E. Liang, S. D. Collins, and R. L. Smith, “Removable tubing interconnects for glass-based micro-fluidic systems made using ECDM,” J. Micromechanics Microengineering, vol. 14, no. 4, pp. 535–541, 2004.
[185] S. K. Jui, A. B. Kamaraj, and M. M. Sundaram, “High aspect ratio micromachining of glass by electrochemical discharge machining (ECDM),” J. Manuf. Process., vol. 15, no. 4, pp. 460–466, 2013.
[186] R. Wüthrich and L. A. Hof, “The gas film in spark assisted chemical engraving (SACE) - A key element for micro-machining applications,” Int. J. Mach. Tools Manuf., vol. 46, no. 7–8, pp. 828–835, 2006.
[187] L. A. Hof, “3D Microstructuring of glass,” Delft University of Technology, The Netherlands, 2004.
[188] Z.-P. Zheng, J.-K. Lin, F.-Y. Huang, and B.-H. Yan, “Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage,” J. Micromechanics Microengineering, vol. 18, no. 2, p. 025014, 2008.
[189] Z.-P. Zheng, W.-H. Cheng, F.-Y. Huang, and B.-H. Yan, “3D microstructuring of Pyrex glass using the electrochemical discharge machining process,” J. Micromechanics Microengineering, vol. 17, no. 5, pp. 960–966, 2007.
[190] M.-S. Han, B.-K. Min, and S. J. Lee, “Modeling gas film formation in electrochemical discharge machining processes using a side-insulated electrode,” J. Micromechanics Microengineering, vol. 18, no. 4, p. 045019, 2008.
[191] C.-P. Cheng, K.-L. Wu, C.-C. Mai, C.-K. Yang, Y.-S. Hsu, and B.-H. Yan, “Study of gas film quality in electrochemical discharge machining,” Int. J. Mach. Tools Manuf., vol. 50, no. 8, pp. 689–697, Aug. 2010.
[192] Z.-P. Zheng, H.-C. Su, F.-Y. Huang, and B.-H. Yan, “The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process,” J. Micromechanics Microengineering, vol. 17, no. 2, p. 265, 2007.
[193] C. Wei, J. Ni, and D. Hu, “Electrochemical discharge machining using micro-drilling tools,” Trans. North Am. Manuf. Res. Inst. SME, vol. 38, pp. 105–111, 2010.
[194] C. K. Yang, K. L. Wu, J. C. Hung, S. M. Lee, J. C. Lin, and B. H. Yan, “Enhancement of ECDM efficiency and accuracy by spherical tool electrode,” Int. J. Mach. Tools Manuf., vol. 51, no. 6, pp. 528–535, 2011.
[195] R. Wüthrich, B. Despont, P. Maillard, and H. Bleuler, “Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration,” J. Micromechanics Microengineering, vol. 16, no. 11, p. N28, 2006.
[196] M. Rusli and K. Furutani, “Performance of micro-hole drilling by ultrasonic-assisted electro-chemical discharge machining,” Adv. Mater. Res., vol. 445, pp. 865–870, 2012.
[197] M. R. Razfar, A. Behroozfar, and J. Ni, “Study of the effects of tool longitudinal oscillation on the machining speed of electrochemical discharge drilling of glass,” Precis. Eng., vol. 38, no. 4, pp. 885–892, 2014.
[198] M.-S. Han, B.-K. Min, and S. J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte,” J. Micromechanics Microengineering, vol. 19, no. 6, p. 65004, 2009.
[199] X. D. Cao, B. H. Kim, and C. N. Chu, “Micro-structuring of glass with features less than 100 µm by electrochemical discharge machining,” Precis. Eng., vol. 33, no. 4, pp. 459–465, 2009.
[200] C.-P. Cheng, K.-L. Wu, C.-C. Mai, Y.-S. Hsu, and B.-H. Yan, “Magnetic field-assisted electrochemical discharge machining,” J. Micromechanics Microengineering, vol. 20, no. 7, p. 75019, 2010.
[201] J. D. Abou Ziki and R. Wüthrich, “Forces exerted on the tool-electrode during constant-feed glass micro-drilling by spark assisted chemical engraving,” Int. J. Mach. Tools Manuf., vol. 73, pp. 47–54, 2013.
[202] J. D. Abou Ziki and R. Wüthrich, “Nature of drilling forces during spark assisted chemical engraving,” Manuf. Lett., vol. 4, pp. 10–13, 2015.
[203] J. D. Abou Ziki, “Spark Assisted Chemical Engraving: A Novel Approach for Quantifying the Machining Zone Parameters Using Drilling Forces,” Concordia University Montreal, Quebec, Canada, 2014.
[204] UKAM, “UKAM Industrial Superhard Tools, Micro Diamond Drills product catalogue.” [Online]. Available: www.ukam.com /micro_core_drills.htm.
[205] A. Sayah, P.-A. Thivolle, V. K. Parashar, and M. a M. Gijs, “Fabrication of microfluidic mixers with varying topography in glass using the powder-blasting process,” J. Micromechanics Microengineering, vol. 19, no. 8, p. 085024, 2009.
[206] S. H. Yeo and L. K. Tan, “Effects of ultrasonic vibrations in micro electro-discharge machining of microholes,” J. Micromechanics Microengineering, vol. 9, no. 4, p. 345, 1999.
[207] M. Bu, T. Melvin, G. J. Ensell, J. S. Wilkinson, and A. G. R. Evans, “A new masking technology for deep glass etching and its microfluidic application,” Sensors Actuators, A Phys., vol. 115, no. 2–3 SPEC. ISS., pp. 476–482, 2004.
[208] J. Chae, J. M. Giachino, and K. Najafi, “Fabrication and characterization of a wafer-level MEMS vacuum package with vertical feedthroughs,” J. Microelectromechanical Syst., vol. 17, no. 1, pp. 193–200, 2008.
[209] J. M. Nagarah and D. A. Wagenaar, “Ultradeep fused silica glass etching with an HF-resistant photosensitive resist for optical imaging applications,” J. Micromechanics Microengineering, vol. 22, no. 3, p. 35011, 2012.
[210] A. Goyal, V. Hood, and S. Tadigadapa, “High speed anisotropic etching of Pyrex® for microsystems applications,” J. Non. Cryst. Solids, vol. 352, no. 6–7, pp. 657–663, May 2006.
[211] T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films, vol. 435, no. 1–2, pp. 62–68, Jul. 2003.
[212] K. Kolari, “Plasma etching of high aspect ratio structures on glass,” in Proceedings of 19th micromechanics Europe workshop, 2008, pp. 81–84.
[213] S. Queste, G. Ulliac, J.C. Jeannot, C.K. Malek, “DRIE of nonconventional materials: first results,” in Proceedings of the 4th international conference on multimaterial micro manufacture, 2008, pp. 171–174.
[214] A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett., vol. 78, no. 19, pp. 2840–2842, 2001.
[215] M. Pavius, C. Hibert, P. Fluckiger, P. Renaud, L. Rolland, and M. Puech, “Profile angle control in SiO2 deep anisotropic dry etching for MEMS fabrication,” in Micro Electro Mechanical Systems, 2004. 17th IEEE International Conference on. (MEMS), 2004, pp. 669–672.
[216] Schott, “Foturan Glass.” [Online]. Available: http://www.design.caltech.edu/micropropulsion/ foturane.html.
[217] P. Maillard, B. Despont, H. Bleuler, and R. Wüthrich, “Geometrical characterization of micro-holes drilled in glass by gravity-feed with spark assisted chemical engraving (SACE),” J. Micromechanics Microengineering, vol. 17, no. 7, p. 1343, 2007.
[218] J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of Pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sensors Actuators, A Phys., vol. 136, no. 2, pp. 554–563, 2007.
[219] R. Wüthrich, U. Spaelter, Y. Wu, and H. Bleuler, “A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE),” J. Micromechanics Microengineering, vol. 16, no. 9, p. 1891, 2006.
[220] R. Wüthrich, V. Fascio, D. Viquerat, and H. Langen, “Study of Spark assisted Electrochemical Etching - Force Measurements,” in International Workshop on Microfactories (IWMF 2000), 2000, pp. 201–204.
[221] J. D. Abou Ziki, L. A. Hof, and R. Wüthrich, “The machining temperature during Spark Assisted Chemical Engraving of glass,” Manuf. Lett., vol. 3, pp. 9–13, 2015.
[222] T. Tutui, “Electrical-discharge Machining of Glass,” J. Japan Soc. Precis. Eng., vol. 26, no. 309, pp. 596–600, 1960.
[223] H. Kurafuji and K. Suda, “Electrical discharge drilling of glass,” Ann. CIRP, vol. 16, pp. 415–419, 1968.
[224] Posalux S.A., “Microfor SACE.” [Online]. Available: https://www.posalux.ch/site/en/products/microfor_sace/sace. [Accessed: 11-Jan-2018].
[225] D. J. Kim, Y. Ahn, S. H. Lee, and Y. K. Kim, “Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass,” Int. J. Mach. Tools Manuf., vol. 46, no. 10, pp. 1064–1067, 2006.
[226] ISO 6983-1:2009, “Automation systems and integration - Numerical control of machines - Program format and definitions of address words.” 2009.
[227] S. Xú, N. Anwer, and S. Lavernhe, “Conversion of G-code programs for milling into STEP-NC,” 2014.
[228] S. Stemmler, D. Abel, O. Adams, and F. Klocke, “Model Predictive Feed Rate Control for a Milling Machine,” IFAC-PapersOnLine, vol. 49, no. 12, pp. 11–16, 2016.
[229] V. Dhokia, S. Kumar, P. Vichare, S. Newman, and R. D Allen, “Surface roughness prediction model for CNC machining of polypropylene,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 222, pp. 137–157, 2008.
[230] A. Naylor, P. Hackney, N. Perera, and E. Clahr, “a Predictive Model for the Cutting Force in Wood Machining Developed Using Mechanical Properties,” Bioresources, vol. 7, no. 3, pp. 2883–2894, 2012.
[231] M. H. Ali, B. A. Khidhir, M. N. M. Ansari, and B. Mohamed, “FEM to predict the effect of feed rate on surface roughness with cutting force during face milling of titanium alloy,” HBRC J., vol. 9, no. 3, pp. 263–269, 2013.
[232] G. Kant and K. S. Sangwan, “Predictive modelling and optimization of machining parameters to minimize surface roughness using artificial neural network coupled with genetic algorithm,” Procedia CIRP, vol. 31, pp. 453–458, 2015.
[233] A. T. Abbas, M. Alata, A. E. Ragab, M. M. El Rayes, and E. A. El Danaf, “Prediction Model of Cutting Parameters for Turning High Strength Steel Grade-H: Comparative Study of Regression Model versus ANFIS,” Adv. Mater. Sci. Eng., vol. 2017, 2017.
[234] M. Abd Rahman, M. Yeakub Ali, A. Saddam Khairuddin -, D. Sonowal, D. Sarma, and P. Bakul Barua, “Comparison with Experimental Results of Models and Modelling with Fuzzy Logic of the Effect on Surface Roughness of Cutting Parameters in Machining of Co28Cr6Mo wrought Steels Effects on Vibration and Surface Roughness in High Speed Micro End- Milling of I,” IOP Conf. Ser. Mater. Sci. Eng., 2017.
[235] S. Tangjitsitcharoen and H. Lohasiriwat, “Intelligent monitoring and prediction of tool wear in CNC turning by utilizing wavelet transform,” Int. J. Adv. Manuf. Technol., Dec. 2017.
[236] S. Lavernhe, C. Tournier, and C. Lartigue, “Model for performance prediction in multi-axis machining,” no. 1, pp. 5–6, 2009.
[237] S. Dinesh, K. Rajaguru, V. Vijayan, and A. G. Antony, “Investigation and Prediction of Material Removal Rate and Surface Roughness in CNC Turning of EN24 Alloy Steel,” Mech. Mech. Eng., vol. 20, no. 4, pp. 451–466, 2016.
[238] E. B. Brousseau, S. S. Dimov, and D. T. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol., vol. 47, no. 1–4, pp. 161–180, 2010.
[239] S. S. Dimov, E. B. J. P. Brousseau, R. Minev, and S. Bigot, “Micro- and nano-manufacturing: Challenges and opportunities,” 2011, vol. 226, pp. 3–15.
[240] F. Feucht, J. Ketelaer, A. Wolff, M. Mori, and M. Fujishima, “Latest machining technologies of hard-to-cut materials by ultrasonic machine tool,” Procedia CIRP, vol. 14, pp. 148–152, 2014.
[241] M. Necati Ozisik, Heat Conduction, Second Edi. New York: John Wiley & Sons Inc., 1993.
[242] J. Wall, Transient Heat Conduction : Analytical Methods. 2009.
[243] G. Yang, A. D. Migone, and K. W. Johnson, “Heat capacity and thermal diffusivity of a glass sample,” Phys. Rev. B, vol. 45, no. 1, pp. 157–160, 1992.
[244] Mathworks, Partial Differential Equation Toolbox User’s Guide R2016a. 2016.
[245] National Instruments, “LabVIEW User Manual,” vol. 134113, no. 320999. Austin, TX, 2008.
[246] Siemens AG, “SIMATIC IPC477D.” pp. 1–5, 2014.
[247] F. Charbonneau, “Improving the sparks assisted chemical engraving (SACE) for industrial application,” Concordia University, 2016.
[248] Newport - ILS, “High-Performance Mid-Range Travel Linear Stages.” pp. 1–4, 2014.
[249] S. Awtar, “Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms,” Massachusetts Institute of Technology, 2004.
[250] Newport Corporation, “XPS-Q8 Universal High-Performance Motion Controller / Driver.” Irvine, CA, p. 232, 2015.
[251] Tcl Developer Xchange site, “Tool Command Language (Tcl).” [Online]. Available: https://www.tcl.tk/. [Accessed: 24-Apr-2018].
[252] Occidental Chemical Corporation (OxyChem), “Caustic Potash Handbook,” Dallas, 2013.
[253] L. A. Hof and R. Wüthrich, “Micromachining glass with in-situ fabricated micro-tools,” in Conference Proceedings of the 16th EUSPEN International Conference & Exhibition, 2016.
[254] A. Bildstein and J. Seidelmann, Industrie 4.0-Readiness: Migration zur Industrie 4.0-Fertigung, in: Bauernhansl, T; ten Hompel, M; Vogel-Heuer, B.(Eds.): Industrie 4.0 in Produktion, Automatisierung und Logistik. Wiesbaden: Springer Vieweg, 2014.
[255] H. (National A. of S. and E. Kagermann, W. (German R. C. for A. I. Wahlster, and J. (Deutsche P. A. Helbig, “Recommendations for implementing the strategic initiative INDUSTRIE 4.0,” Final Rep. Ind. 4.0 WG, no. April, p. 82, 2013.
[256] C. Scheuermann, S. Verclas, and B. Bruegge, “Agile Factory - An Example of an Industry 4.0 Manufacturing Process,” 3rd IEEE Int. Conf. Cyber-Physical Syst. Networks Publ., vol. 2008, p. 5, 2015.
[257] J. Hiemenz and Stratasys Inc., “3D Printing Jigs , Fixtures and Other Manufacturing Tools,” Stratasys, pp. 1–9, 2015.
[258] C. K. Yang, C. P. Cheng, C. C. Mai, a. Cheng Wang, J. C. Hung, and B. H. Yan, “Effect of surface roughness of tool electrode materials in ECDM performance,” Int. J. Mach. Tools Manuf., vol. 50, no. 12, pp. 1088–1096, 2010.
[259] Y. Xu, C. Wang, L. Li, N. Matsumoto, K. Jang, Y. Dong, K. Mawatari, T. Suga, and T. Kitamori, “Bonding of glass nanofluidic chips at room temperature by a one-step surface activation using an O2/CF4 plasma treatment,” Lab Chip, vol. 13, no. 6, pp. 1048, 2013.
[260] Y. Xu, C. Wang, Y. Dong, and L. Li, “Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process,” pp. 1011–1018, 2012.
[261] N. Chiem, L. Lockyear-shultz, P. Andersson, C. Skinner, and J. Harrison, “Room temperature bonding of micromachined glass devices for capillary electrophoresis,” Science (80-. )., vol. 4005, no. MAY 2000, pp. 147–152, 2000.
[262] C. Duan, W. Wang, and Q. Xie, Review article: Fabrication of nanofluidic devices, vol. 7, no. 2. 2013.
[263] A. Iles, A. Oki, and N. Pamme, “Bonding of soda-lime glass microchips at low temperature,” Proc. 2006 Int. Conf. Microtechnologies Med. Biol., pp. 109–111, 2006.
[264] H. Moriceau, F. Rieutord, F. Fournel, Y. Le Tiec, L. Di Cioccio, C. Morales, A. M. Charvet, and C. Deguet, “Overview of recent direct wafer bonding advances and applications,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 1, no. 4, p. 043004, 2011.
[265] U. Gösele, Y. Bluhm, G. Kästner, P. Kopperschmidt, G. Kräuter, R. Scholz, a. Schumacher, S. Senz, Q.-Y. Tong, L.-J. Huang, Y.-L. Chao, and T. H. Lee, “Fundamental issues in wafer bonding,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 17, no. 4, p. 1145, 1999.
[266] M. Stjernström and J. Roeraade, “Method for fabrication of microfluidic systems in glass,” J. Micromechanics Microengineering, vol. 8, no. 1, pp. 33–38, 1999.
[267] C. K. Chung, H. C. Chang, T. R. Shih, S. L. Lin, E. J. Hsiao, Y. S. Chen, E. C. Chang, C. C. Chen, and C. C. Lin, “Water-assisted CO2laser ablated glass and modified thermal bonding for capillary-driven bio-fluidic application,” Biomed. Microdevices, vol. 12, pp. 107–114, 2010.
[268] Different industrial key players in the glass microfabrication field, “Private communications.” 2017.
[269] A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. a Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D. Appl. Phys., vol. 40, no. 5, pp. 1447–1459, 2007.
[270] C. K. Chung and S. L. Lin, “Laser Micromachining,” J. Micromechanics Microengineering, vol. 21, no. 6, p. 65023, 2011.
[271] H. Wensink, H. V Jansen, J. W. Berenschot, and M. C. Elwenspoek, “Mask materials for powder blasting,” J. Micromechanics Microengineering, vol. 10, no. 2, p. 175, 2000.
[272] SCHOTT North America Inc., “Borofloat 33 - General Information.” [Online]. Available: www.us.schott.com/borofloat. [Accessed: 11-Jan-2018].
[273] “Micronit Microtechnologies BV.” [Online]. Available: https://www.micronit.com/. [Accessed: 11-Jan-2018].
[274] H. Noh, K. Moon, A. Cannon, P. J. Hesketh, and C. P. Wong, “Wafer bonding using microwave heating of parylene intermediate layers,” J. Micromechanics Microengineering, vol. 14, no. 4, pp. 625–631, 2004.
[275] N. Cocheteau, a M. Pantel, F. Lebon, I. Rosu, S. A. Zaid, and I. Savin, “Mechanical characterisation of direct bonding,” Evolution (N. Y)., pp. 1–6, 2013.
[276] “Sonoscan, sound technology with vision.” [Online]. Available: http://www.sonoscan.com. [Accessed: 11-Jan-2018].
[277] U. Mescheder, Mikrosystemtechnik : Konzepte und Anwendungen, no. 2., überarb. und erg. Auflage. Stuttgart: Vieweg + Teubner, 2004.
[278] H. Justinger and G. Hirt, “Analysis of Size-Effects in the Miniaturized Deep Drawing Process,” in Sheet Metal 2007, 2007, vol. 344, pp. 791–798.
[279] E. Berthier, E. W. K. Young, and D. Beebe, “Engineers are from PDMS-land, Biologists are from Polystyrenia,” Lab Chip, vol. 12, no. 7, p. 1224, 2012.
[280] Yole Development, “Market and Technology Trends for Microfluidic Applications - September 21,” 2011.
[281] N. S. Cameron, H. Roberge, T. Veres, S. C. Jakeway, and H. John Crabtree, “High fidelity, high yield production of microfluidic devices by hot embossing lithography: rheology and stiction.,” Lab Chip, vol. 6, no. 7, pp. 936–41, 2006.
[282] J. Greener, W. Li, J. Ren, D. Voicu, V. Pakharenko, T. Tang, and E. Kumacheva, “ESI: Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing.,” Lab Chip, vol. 10, no. 4, pp. 522–4, 2010.
[283] P. W. Leech, “Hot Embossing Of Microchannels in Cyclic Olefin Copolymer,” Cambridge Journals Online, vol. 1191, no. 5, pp. 1–12, 2009.
[284] B. D. Gates, Q. Xu, J. C. Love, D. B. Wolfe, and G. M. Whitesides, “Unconventional Nanofabrication,” Annu. Rev. Mater. Res., vol. 34, no. 1, pp. 339–372, 2004.
[285] D. Yao, P. Nagarajan, L. Li, and A. Y. Yi, “A two‐station embossing process for rapid fabrication of surface microstructures on thermoplastic polymers,” Polym. Eng. Sci., vol. 47, no. 4, pp. 530–539, 2007.
[286] T. Schaller, L. Bohn, J. Mayer, and K. Schubert, “Microstructure grooves with a width of less than 50 ??m cut with ground hard metal micro end mills,” Precis. Eng., vol. 23, no. 4, pp. 229–235, 1999.
[287] P. P. Shiu, G. K. Knopf, M. Ostojic, and S. Nikumb, “Rapid fabrication of tooling for microfluidic devices via laser micromachining and hot embossing,” J. Micromechanics Microengineering, vol. 18, no. 2, p. 025012, 2008.
[288] T. Shibata, Y. Takahashi, T. Kawashima, T. Kubota, M. Mita, T. Mineta, and E. Makino, “Micromachining of electroformed nickel mold using thick photoresist microstructure for imprint technology,” Microsyst. Technol., vol. 14, no. 9–11, pp. 1359–1365, 2008.
[289] R. Novak, N. Ranu, and R. a Mathies, “Rapid fabrication of nickel molds for prototyping embossed plastic microfluidic devices.,” Lab Chip, vol. 13, no. 8, pp. 1468–71, 2013.
[290] M. Debono, D. Voicu, M. Pousti, M. Safdar, R. Young, E. Kumacheva, and J. Greener, “One-Step Fabrication of Microchannels with Integrated Three Dimensional Features by Hot Intrusion Embossing,” Sensors, vol. 16, no. 12, p. 2023, 2016.
[291] L. Zhang, F. Gu, L. Tong, and X. Yin, “Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates,” Microfluid. Nanofluidics, vol. 5, no. 6, pp. 727–732, 2008.
[292] H. Niino, X. Ding, R. Kurosaki, a. Narazaki, T. Sato, and Y. Kawaguchi, “Imprinting by hot embossing in polymer substrates using a template of silica glass surface-structured by the ablation of LIBWE method,” Appl. Phys. A, vol. 79, no. 4–6, pp. 827–828, 2004.
[293] J. W. Liu, Q. a Huang, J. T. Shang, and J. Y. Tang, “Micromachining of Pyrex7740 Glass for Micro-Fluidic Devices,” in 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2010, no. October, pp. 1907–1909.
[294] R. U. M. Haque and K. D. Wise, “A glass-in-silicon reflow process for three-dimensional microsystems,” J. Microelectromechanical Syst., vol. 22, no. 6, pp. 1470–1477, 2013.
[295] S. S. Zumdahl and D. J. DeCoste, Introductory Chemistry, Seventh ed. Brooks/Cole, Cengage Learning, 2010.
[296] D. C. Boyd, P. S. Danielson, D. A. Thompson, M. Velez, S. T. Reis, and R. Brow, “Glass,” in Kirk-Othmer Encyclopedia of Chemical Technology, 2004.
[297] X. D. Cao, B. H. Kim, and C. N. Chu, “Micro-structuring of glass with features less than 100 µm by electrochemical discharge machining,” Precis. Eng., vol. 33, no. 4, pp. 459–465, 2009.
[298] S. K. Chak and P. Venkateswara Rao, “The drilling of Al2O3 using a pulsed DC supply with a rotary abrasive electrode by the electrochemical discharge process,” Int. J. Adv. Manuf. Technol., vol. 39, no. 7–8, pp. 633–641, 2008.
[299] J. W. Liu, T. M. Yue, and Z. N. Guo, “An analysis of the discharge mechanism in electrochemical discharge machining of particulate reinforced metal matrix composites,” Int. J. Mach. Tools Manuf., vol. 50, no. 1, pp. 86–96, 2010.
[300] M. Kim, B.-U. Moon, and C. H. Hidrovo, “Enhancement of the thermo-mechanical properties of PDMS molds for the hot embossing of PMMA microfluidic devices,” J. Micromechanics Microengineering, vol. 23, no. 9, p. 095024, 2013.
[301] R. W. Jaszewski, H. Schift, J. Gobrecht, and P. Smith, “Hot embossing in polymers as a direct way to pattern resist,” Microelectron. Eng., vol. 41, pp. 575–578, 1998.
[302] N. Soga, “Elastic moduli and fracture toughness of glass,” J. Non. Cryst. Solids, vol. 73, no. 1–3, pp. 305–313, 1985.
[303] M. Yamane and J. D. Mackenzie, “Vicker’s Hardness of glass,” J. Non. Cryst. Solids, vol. 15, no. 2, pp. 153–164, 1974.
[304] Saint Gobain Glass, “Glass physical properties.” [Online]. Available: http://uk.saint-gobain-glass.com/trade-customers/physical-properties.
[305] T. E. Wilantewicz and J. R. Varner, “Vickers indentation behavior of several commercial glasses at high temperatures,” J. Mater. Sci., vol. 43, no. 1, pp. 281–298, 2008.
[306] I. L. Denry and J. A. Holloway, “Elastic constants, Vickers hardness, and fracture toughness of fluorrichterite-based glass-ceramics,” Dent. Mater., vol. 20, no. 3, pp. 213–219, 2004.
[307] H. Matzke, E. Toscano, J. Routbort, and K. Reimann, “Temperature Dependence and Fracture Toughness and Elastic Moduli of a Waste Glass,” J. Am. Ceram. Soc., vol. 69, no. 7, p. C‐138-C‐139, 1986.
[308] F. Petit, A. C. Sartieaux, M. Gonon, and F. Cambier, “Fracture toughness and residual stress measurements in tempered glass by Hertzian indentation,” Acta Mater., vol. 55, no. 8, pp. 2765–2774, 2007.
[309] I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromechanics Microengineering, vol. 24, p. 035017, 2014.
[310] MIT, “Material Properties PDMS.” [Online]. Available: http://www.mit.edu/~6.777/matprops/pdms.htm.
[311] A. I. M. Greer, I. Vasiev, B. Della-Rosa, and N. Gadegaard, “Fluorinated ethylene–propylene: a complementary alternative to PDMS for nanoimprint stamps,” Nanotechnology, vol. 27, no. 15, p. 155301, 2015.
[312] Microchem, “Material properties.” [Online]. Available: http://www.microchem.com/pdf/SU-8 3000 Data Sheet.pdf.
[313] J. Hammacher, A. Fuelle, J. Flaemig, J. Saupe, B. Loechel, and J. Grimm, “Stress engineering and mechanical properties of SU-8-layers for mechanical applications,” Microsyst. Technol., vol. 14, no. 9–11, pp. 1515–1523, 2008.
[314] R. K. Jena, C. Y. Yue, and K. X. Yun, “Effect of a CNT based composite micromold on the replication fidelity during the microfabrication of polymeric microfluidic devices,” Rsc Adv., vol. 4, no. 24, pp. 12448–12456, 2014.
[315] Cytec Idustries Inc., “Conapoxy FR-1080.” [Online]. Available: http://www.needfill.co.kr/cd/FR-1080.html.
[316] Ellsworthadhesives, “Epoxy Resins Material properties.” [Online]. Available: http://www.ellsworthadhesives.co.uk/media/wysiwyg/files/cytec/CytecElectronicsBrochure-EU.pdf.
[317] “Statistics based on 2011–2016 order statistics from FlowJEM Inc. Unpublished work.” .
[318] G. Behrens, M. Ruhe, H. Tetzel, and F. Vollertsen, “Effect of tool geometry variations on the punch force in micro deep drawing of rectangular components,” Prod. Eng., vol. 9, no. 2, pp. 195–201, Apr. 2015.
[319] G. Behrens, F. O. Trier, H. Tetzel, and F. Vollertsen, “Influence of tool geometry variations on the limiting drawing ratio in micro deep drawing,” Int. J. Mater. Form., vol. 9, no. 2, pp. 253–258, Apr. 2016.
[320] M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, and U. Engel, “Microforming,” CIRP Ann., vol. 50, no. 2, pp. 445–462, 2001.
[321] F. Vollertsen and Z. Hu, “Tribological Size Effects in Sheet Metal Forming Measured by a Strip Drawing Test,” CIRP Ann., vol. 55, no. 1, pp. 291–294, 2006.
[322] J. T. Gau, C. Principe, and J. Wang, “An experimental study on size effects on flow stress and formability of aluminm and brass for microforming,” J. Mater. Process. Technol., vol. 184, no. 1–3, pp. 42–46, 2007.
[323] F. Vollertsen, D. Biermann, H. N. Hansen, I. S. Jawahir, and K. Kuzman, “Size effects in manufacturing of metallic components,” CIRP Ann., vol. 58, no. 2, pp. 566–587, 2009.
[324] Z. Hu et al., “Forming tools for micro deep drawing—influence of geometrical tolerance of forming tools on the punch force in micro deep drawing,” wt Werkstattstech. online, vol. H 11 (12), pp. 814–819, 2009.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top