Akbari Choubar, Mohammad (2018) Performance Enhancement of Radiation and Scattering Properties of Circularly Polarized Antennas Using Frequency Selective Surface. PhD thesis, Concordia University.
Preview |
Text (application/pdf)
7MBAkbari Choubar_PhD_F2018.pdf - Accepted Version |
Abstract
At millimetre-wave (MMW) frequencies, losses associated with wireless link and system are critical issues that need to be overcome in designing high-performance wireless systems. To compensate the overall loss in a wireless communication system, a high-gain antenna is required. Circularly polarized (CP) antennas are among preferred choices to design because they offer many advantages due to their good resistance to polarization mismatch, mitigation of multipath effects, and some phasing issues and immunity to Faraday rotation. On the other hand, frequency selective surface (FSS) technology is recently employed to enhance the performance of radiation and scattering properties of antennas used in different sectors such as aerospace, medical, and microwave industry. Therefore, it is appropriate and attractive to propose the use of FSS technology to design practical and efficient CP antennas.
CP Fabry-Perot cavity (FPC) antennas based on FSS are investigated in this thesis to fulfil the growing demand for broadband high-gain antennas with low radar cross section (RCS). The thesis investigates both characteristic improvement of CP antennas and RCS reduction issues employing FSS structures.
Initially, a high gain CP dielectric resonator (DR) antenna is proposed. Using an FSS superstrate layer, a gain enhancement of 8.5 dB is achieved. A detailed theoretical analysis along with different models are presented and used to optimize the superstrate size and the air gap height between the antenna and superstrate layer.
The second research theme focusses on developing an effective approach for mitigating the near-field coupling between four-port CP antennas in a Multiple-Input, Multiple-Output (MIMO) system. This is obtained by incorporating a two-layer transmission-type FSS superstrate based on planar crossed-dipole metal strips. Another technique for suppressing the spatially coupling
between DR antennas using a new FSS polarization-rotator wall is studied as well. The coupling reduction is achieved by embedding an FSS wall between two DRAs, which are placed in the H-plane. Utilizing this FSS wall, the TE modes of the antennas become orthogonal, which reduces the spatially coupling between the two DRAs.
The third research theme of this thesis is to enhance the purity and bandwidth of CP with the least amount of insertion loss by the use of an LP-to-CP-polarizer which is based on multilayer FSS slab. This polarizer is approximately robust under oblique illuminations. To have a high-gain CP antenna, an 8-element LP array antenna with Chebyshev tapered distribution is designed and integrated with the polarizer.
Eventually, in order to enhance the scattering property, the fourth research theme investigates on RCS reduction by the use of two different approaches which are based on FSS. Initially, a wideband FSS metasurface for RCS reduction based on a polarization conversion is proposed. To distribute the scattered EM waves and suppress the maximum bistatic RCS of the metasurface over a broad band of incident angles at both polarizations, the elements are arranged using the binary coding matrix achieved by group search optimization (GSO) algorithm. The reflective two-layer metasurface is designed in such a way to generate reflection phase difference of 180° between two elements “0” and “1” on a broad frequency band. A theoretical analysis is performed on the ratio of the “0” and “1” elements using Least Square Error (LSE) method to find the best ratio value. As the second activity of this research theme, wideband CP antenna with low RCS and high gain properties is presented. The proposed antenna is based on a combination of the FPC and sequential feeding technique.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering |
---|---|
Item Type: | Thesis (PhD) |
Authors: | Akbari Choubar, Mohammad |
Institution: | Concordia University |
Degree Name: | Ph. D. |
Program: | Electrical and Computer Engineering |
Date: | 1 April 2018 |
Thesis Supervisor(s): | Sebak, Abdel Razik |
ID Code: | 984219 |
Deposited By: | MOHAMMAD AKBARI CHOUBAR |
Deposited On: | 31 Oct 2018 17:16 |
Last Modified: | 17 Aug 2022 16:43 |
Repository Staff Only: item control page