Login | Register

Development of an Improved PCM-to-Air Heat Exchanger for Building Envelopes - Advancement to Free Cooling Applications

Title:

Development of an Improved PCM-to-Air Heat Exchanger for Building Envelopes - Advancement to Free Cooling Applications

Ahmed, Mohamed (2019) Development of an Improved PCM-to-Air Heat Exchanger for Building Envelopes - Advancement to Free Cooling Applications. PhD thesis, Concordia University.

[thumbnail of Ahmed_PhD_S2020.pdf]
Preview
Text (application/pdf)
Ahmed_PhD_S2020.pdf - Accepted Version
22MB

Abstract

With high energy consumption trends in buildings, the adoption of the thermal energy storage systems toward reducing cooling load has been increased in recent years. In this study, the utilization of phase change materials (PCMs) has been comprehensively discussed for building free cooling applications. The potential and limitations of using PCM-to-Air Heat Exchangers (PAHXs) for free cooling applications were analyzed. Referring to the local climatic conditions, one of the most important operational challenges that face PAHX applications is the insufficient cooling charging energy during the PCM solidification phase. An improved PAHX type was developed in this study for building envelopes by applying the concept of thermal radiation losses to the sky during night-time to increase the cooling potential of the system. Two real-scale prototypes were designed and set-up to monitor the effect of radiative cooling on the thermal performance of the PAHX system. The experimental results indicated that exposure to the clear sky, as a cooling source, during PCM solidification increases the cooling potential of the system due to the maximized thermal losses by radiation. A 2D numerical model was developed considering the PCM thermal storage, short and long waves radiation, and convection phenomena. New thermal boundaries of long-wave radiation were developed between the system elements and the sky temperature. In addition, the 2D model considered various forms of convective heat transfer phenomenon. The experimental data and inter-model comparison were applied to validate the proposed model. The application of the developed PAHX system in the hot desert climate was assessed to evaluate its thermal performance. It was concluded that the PAHX system outlet air could be directly supplied to the indoor spaces through a direct free cooling application to satisfy the cooling loads, also it could be introduced to the mechanical cooling unit to minimize the energy consumption. The results showed that the thermal comfort levels were enhanced by up to 18% (during the direct free cooling application), and the energy consumption for cooling purposes was
reduced by 18.5% (during the energy savings mode) saving an amount of energy up to about 11 kWh/week.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (PhD)
Authors:Ahmed, Mohamed
Institution:Concordia University
Degree Name:Ph. D.
Program:Building Engineering
Date:October 2019
Thesis Supervisor(s):Haghighat, Fariborz and El-Mankibi, Mohamed
Keywords:Energy storage - Radiative cooling- PCM-to-air heat exchangers - Numerical modeling - Experimental validation - Experimental investigation
ID Code:986171
Deposited By: Mohamed Abdelmohsen Dardir Ahmed
Deposited On:25 Jun 2020 18:10
Last Modified:25 Jun 2020 18:10

References:

Adelard, L., Pignolet-Tardan, F., Mara, T., Lauret, P., Garde, F., and Boyer, H. 1998. “Sky Temperature Modelisation and Applications in Building Simulation.” Renewable Energy 15 (1): 418–30. DOI: 10.1016/S0960-1481(98)00198-0.
Agyenim, Francis, Hewitt, Neil, Eames, Philip, and Smyth, Mervyn. 2010. “A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS).” Renewable and Sustainable Energy Reviews 14: 615–28. DOI: 10.1016/j.rser.2009.10.015.
Ali, Ahmed Hamza H. 2013. “Desiccant Enhanced Nocturnal Radiative Cooling-Solar Collector System for Air Comfort Application in Hot Arid Areas.” Sustainable Energy Technologies and Assessments 1 (March): 54–62. DOI: 10.1016/j.seta.2013.01.003.
AL-Lami, Alaa M., AL-Salihi, Ali M., and AL-Timimi, Yaseen K.. 2017. “Parameterization of the Downward Long Wave Radiation under Clear-Sky Condition in Baghdad, Iraq.” Asian Journal of Applied Sciences 10: 10–17. DOI: 10.3923/ajaps.2017.10.17.
Al-Nimr, M., Tahat, M., and Al-Rashdan, M. 1999. “A Night Cold Storage System Enhanced by Radiative Cooling - a Modified Australian Cooling System.” Applied Thermal Engineering 19 (9): 1013–26.
Arkar, C., and Medved, S. 2005. “Influence of Accuracy of Thermal Property Data of a Phase Change Material on the Result of a Numerical Model of a Packed Bed Latent Heat Storage with Spheres.” Thermochimica Acta 438: 192–201. DOI: 10.1016/j.tca.2005.08.032.
———. 2007. “Free Cooling of a Building Using PCM Heat Storage Integrated into the Ventilation System.” Solar Energy 81 (9): 1078–87. DOI: 10.1016/j.solener.2007.01.010.
Arkar, C., Vidrih, B., and Medved, S. 2007. “Efficiency of Free Cooling Using Latent Heat Storage Integrated into the Ventilation System of a Low Energy Building.” International Journal of Refrigeration 30: 134–43. DOI: 10.1016/j.ijrefrig.2006.03.009.
ASHRAE. 2002. ASHRAE Guideline - Measurement of Energy and Demand Savings. Vol. 14.
———. 2009a. 2009 ASHRAE Handbook - Fundamentals SI Edition. SI. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
———. 2009b. “ASHRAE Handbook_Fundamentals.” American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
———. 2013. “ASHRAE Standard 55 - Thermal Environmental Conditions for Human Occupancy.” ANSI-ASHRAE.
Bahrar, Myriam. 2018. “Contribution Au Développement et à l’analyse d’une Enveloppe de Bâtiment Multifonctionnelle Dans Le Cadre de l’optimisation Du Confort Dans l’habitat.” PhD Thesis.
Barzin, Reza, Chen, John J. J., Young, Brent R., and Farid, Mohammed M. 2015. “Application of PCM Energy Storage in Combination with Night Ventilation for Space Cooling.” Applied Energy 158: 412–21. DOI: 10.1016/j.apenergy.2015.08.088.
BLOX, USINAGE PLASTIQUES. 2019. Polymethyl Methacrylate (PMMA). Vol. 2019. (https://www.blox.fr/)
Borderon, Julien. 2012. “Intégration Des Matériaux à Changement de Phase Comme Système de Régulation Dynamique En Rénovation Thermique.” PhD Thesis.
Borderon, Julien, Virgone, Joseph, and Cantin, Richard. 2015. “Modeling and Simulation of a Phase Change Material System for Improving Summer Comfort in Domestic Residence.” Applied Energy 140: 288–96. DOI: 10.1016/j.apenergy.2014.11.062.
Budaiwi, I. M. 2001. “Energy Performance of the Economizer Cycle under Three Climatic Conditions in Saudi Arabia.” International Journal of Ambient Energy 22 (2): 83–94. DOI: 10.1080/01430750.2001.9675391.
Bulut, Hüsamettin, and Aktacir, Mehmet Azmi. 2011. “Determination of Free Cooling Potential: A Case Study for İstanbul, Turkey.” Applied Energy 88 (3). DOI: 10.1016/j.apenergy.2010.08.030.
Butala, Vincenc, and Stritih, Uroš. 2009. “Experimental Investigation of PCM Cold Storage.” Energy & Buildings 41: 354–59. DOI: 10.1016/j.enbuild.2008.10.008.
CCES. 2008. “Residential Buildings Total Energy End Use.” Center of Climate and Energy Solutions.
Çengel, Yunus A. 2003. Heat Transfer: A Practical Approach. Illustrated. McGraw-Hill.
Ceylan, İlhan, Ergün, Alper, Acar, Bahadır, and Aydin, Mustafa. 2016. “Psychometric and Thermodynamic Analysis of New Ground Source Evaporative Cooling System.” Energy & Buildings 119: 20–27. DOI: 10.1016/j.enbuild.2016.03.017.
Chan, Hoy-Yen, Riffat, Saffa B., and Zhu, Jie. 2010. “Review of Passive Solar Heating and Cooling Technologies.” Renewable and Sustainable Energy Reviews 14: 781–89. DOI: 10.1016/j.rser.2009.10.030.
Chandrasekar, M., Rajkumar, S., and Valavan, D. 2015. “A Review on the Thermal Regulation Techniques for Non-Integrated Flat PV Modules Mounted on Building Top.” Energy & Buildings 86: 692–97. DOI: 10.1016/j.enbuild.2014.10.071.
Chen, Chao, Guo, Haifeng, Liu, Yuning, Yue, Hailin, and Wang, Chendong. 2008. “A New Kind of Phase Change Material (PCM) for Energy-Storing Wallboard.” Energy & Buildings 40: 882–90. DOI: 10.1016/j.enbuild.2007.07.002.
Cole, R. J. 1976. “The Longwave Radiative Environment around Buildings.” Building and Environment 11 (1). DOI: 10.1016/0360-1323(76)90014-7.
COMSOL-AB. 2017. COMSOL Multiphysics 5.3 (Build: 316). Vol. 5.3.
Cuce, Pinar Mert, and Riffat, Saffa. 2016. “A State of the Art Review of Evaporative Cooling Systems for Building Applications.” Renewable and Sustainable Energy Reviews 54: 1240–49. DOI: 10.1016/j.rser.2015.10.066.
Cui, X., Chua, K. J., Islam, M. R., and Ng, K. C. 2015. “Performance Evaluation of an Indirect Pre-Cooling Evaporative Heat Exchanger Operating in Hot and Humid Climate.” Energy Conversion and Management 102: 140–50. DOI: 10.1016/j.enconman.2015.02.025.
Dardir, Mohamed A. 2017. Natural Ventilation Techniques as a Base for Environmental Passive Architecture. Cairo, Egypt: Noor Publishing.
Dardir, Mohamed, Panchabikesan, Karthik, Haghighat, Fariborz, El Mankibi, Mohamed, and Yuan, Yanping. 2019. “Opportunities and Challenges of PCM-to-Air Heat Exchangers (PAHXs) for Building Free Cooling Applications—A Comprehensive Review.” Journal of Energy Storage 22. DOI: 10.1016/j.est.2019.02.011.
Darzi, A. A. R., Moosania, S. M., Tan, F. L. and Farhadi, M. 2013. “Numerical Investigation of Free-Cooling System Using Plate Type PCM Storage.” International Communications in Heat and Mass Transfer 48: 155–63. DOI: 10.1016/j.icheatmasstransfer.2013.08.025.
De Gracia, Alvaro, and Cabeza, Luisa F., 2015. “Phase Change Materials and Thermal Energy Storage for Buildings.” Energy & Buildings 103: 414–19. DOI: 10.1016/j.enbuild.2015.06.007.
De Gracia, Alvaro, Castell, Albert, Fernández, Cèsar and Cabeza, Luisa F. 2015. “A Simple Model to Predict the Thermal Performance of a Ventilated Facade with Phase Change Materials.” Energy & Buildings 93. DOI: 10.1016/j.enbuild.2015.01.069.
De Gracia, Alvaro, David, Damien, Castell, Albert, Cabeza, Luisa F., and Virgone, Joseph. 2013. “A Correlation of the Convective Heat Transfer Coefficient between an Air Flow and a Phase Change Material Plate.” Applied Thermal Engineering 51 (1): 1245–54. DOI: 10.1016/j.applthermaleng.2012.11.045.
De Gracia, Alvaro, Navarro, Lidia, Castell, Albert, and Cabeza, Luisa F. 2013. “Numerical Study on the Thermal Performance of a Ventilated Facade with PCM.” Applied Thermal Engineering 61 (2): 372–80. DOI: 10.1016/j.applthermaleng.2013.07.035.
———. 2015. “Energy Performance of a Ventilated Double Skin Facade with PCM under Different Climates.” Energy & Buildings 91: 37–42. DOI: 10.1016/j.enbuild.2015.01.011.
De Gracia, Alvaro, Navarro, Lidia, Castell, Albert, Ruiz-Pardo, Álvaro, Alvárez, Servando, and Cabeza, Luisa F. 2013. “Experimental Study of a Ventilated Facade with PCM during Winter Period.” Energy & Buildings 58. DOI: 10.1016/j.enbuild.2012.10.026.
De Gracia, Alvaro, Navarro, Lidia, Castell, Albert, Ruiz-Pardo, Álvaro, Álvarez, Servando, and Cabeza, Luisa F. 2013. “Thermal Analysis of a Ventilated Facade with PCM for Cooling Applications.” Energy & Buildings 65. DOI: 10.1016/j.enbuild.2013.06.032.
Diarce, G., Á Campos-Celador, K. Martin, A. Urresti, A. García-Romero, and J. M. Sala. 2014. “A Comparative Study of the CFD Modeling of a Ventilated Active Façade Including Phase Change Materials.” Applied Energy 126: 307–17. DOI: 10.1016/j.apenergy.2014.03.080.
Del Pero, Claudio, Aste, Niccolò, Paksoy, Halime, Haghighat, Fariborz, Grillo, Samuele, and Leonforte, Fabrizio. 2018. “Energy Storage Key Performance Indicators for Building Application.” Sustainable Cities and Society 40. DOI: 10.1016/j.scs.2018.01.052.
Dolado, Pablo, Lazaro, Ana, Marin, Jose M., and Zalba, Belen. 2011. “Characterization of Melting and Solidification in a Real Scale PCM-Air Heat Exchanger: Numerical Model and Experimental Validation.” Energy Conversion and Management 52: 1890–1907. DOI: 10.1016/j.enconman.2010.11.017.
Domanski, R., and Fellah, G. 1996. “Exergy Analysis for the Evaluation of a Thermal Storage System Employing PCMs with Different Melting Temperatures.” Applied Thermal Engineering 16 (11): 907–19. DOI: 10.1016/1359-4311(96)00003-8.
Dovrtel, Klemen, and Medved, Sašo. 2011. “Weather-Predicted Control of Building Free Cooling System.” Applied Energy 88: 3088–96. DOI: 10.1016/j.apenergy.2011.03.010.
———. 2012. “Multi-Objective Optimization of a Building Free Cooling System, Based on Weather Prediction.” Energy & Buildings 52: 99–106. DOI: 10.1016/j.enbuild.2012.05.014.
DuPont. 2012. “DuPont Energain®Data Sheet.” DuPont, The miracles of science.
El-Sawi, Azeldin. 2013. “Centralized Thermal Storage System Model for Buildings of the Future: Development and Validation.” PhD Thesis.
El-Sawi, Azeldin, Haghighat, Fariborz, and Akbari, Hashem. 2013. “Centralized Latent Heat Thermal Energy Storage System: Model Development and Validation.” Energy & Buildings 65: 260–71. DOI: 10.1016/j.enbuild.2013.05.027.
———. 2014. “Assessing Long-Term Performance of Centralized Thermal Energy Storage System.” Applied Thermal Engineering 62: 313–21. DOI: 10.1016/j.applthermaleng.2013.09.047.
EnergyPlus. 2019. Weather Data. Vol. 2019. July.
Evola, G., Marletta, L., and Sicurella, F. 2014. “Simulation of a Ventilated Cavity to Enhance the Effectiveness of PCM Wallboards for Summer Thermal Comfort in Buildings.” Energy & Buildings 70: 480–89. DOI: 10.1016/j.enbuild.2013.11.089.
Fan, Gaochao, Huang, Zaiyin, and Wang, Tenghui. 2013. “Size Effect on Thermodynamic Properties of CaMoO4 Micro/Nano Materials and Reaction Systems.” Solid State Sciences 16: 121–24. DOI: 10.1016/j.solidstatesciences.2012.11.006.
Farid, Mohammed M., Khudhair, Amar M., Razack, Siddique Ali K., and Al-Hallaj, Said. 2004. “Review: A Review on Phase Change Energy Storage: Materials and Applications.” Energy Conversion and Management 45: 1597–1615. DOI: 10.1016/j.enconman.2003.09.015.
Fleming, Evan, Wen, Shaoyi, Shi, Li, and da Silva, Alexandre K. 2015. “Experimental and Theoretical Analysis of an Aluminum Foam Enhanced Phase Change Thermal Storage Unit.” International Journal of Heat and Mass Transfer 82: 273–81. DOI: 10.1016/j.ijheatmasstransfer.2014.11.022.
Frusteri, F., Leonardi, V., Vasta, S., and Restuccia, G. 2005. “Thermal Conductivity Measurement of a PCM Based Storage System Containing Carbon Fibers.” Applied Thermal Engineering 25: 1623–33. DOI: 10.1016/j.applthermaleng.2004.10.007.
Fukai, Jun, Kanou, Makoto, Kodama, Yoshikazu, and Miyatake, Osamu. 2000. “Thermal Conductivity Enhancement of Energy Storage Media Using Carbon Fibers.” Energy Conversion and Management 41: 1543–56. DOI: 10.1016/S0196-8904(99)00166-1.
Ghiaus, Cristian, and Allard, Francis. 2006. “Potential for Free-Cooling by Ventilation.” Solar Energy 80: 402–13. DOI: 10.1016/j.solener.2005.05.019.
Gowreesunker, B. L., Tassou, S. A., and Kolokotroni, M. 2013. “Coupled TRNSYS-CFD Simulations Evaluating the Performance of PCM Plate Heat Exchangers in an Airport Terminal Building Displacement Conditioning System.” Building and Environment 65: 132–45. DOI: 10.1016/j.buildenv.2013.04.003.
Haghighat, Fariborz. 2013. “Applying Energy Storage in Ultra-Low Energy Buildings.” IEA - Energy Technology Network - Energy Conservation through Energy Storage.
———. 2018. “Energy Storage with Energy Efficient Buildings and Districts: Optimization and Automation.” International Energy Agency (IEA) - Annex 31.
Halawa, E., Bruno, F., and Saman, W. 2005. “Numerical Analysis of a PCM Thermal Storage System with Varying Wall Temperature.” Energy Conversion and Management 46: 2592–2604. DOI: 10.1016/j.enconman.2004.11.003.
Halawa, E., and Saman, W. 2011. “Thermal Performance Analysis of a Phase Change Thermal Storage Unit for Space Heating.” Renewable Energy 36: 259–64. DOI: 10.1016/j.renene.2010.06.029.
Halawa, E., Saman, W., and Bruno, F. 2010. “A Phase Change Processor Method for Solving a One-Dimensional Phase Change Problem with Convection Boundary.” Renewable Energy 35: 1688–95. DOI: 10.1016/j.renene.2010.01.016.
IEA, International Energy Agency. 2017a. “Key World Energy Statistics.” International Energy Agency. http://www.iea.org/statistics/.
———. 2017b. “World Energy Outlook.” International Energy Agency. www.iea.org.
Inard, Christian, Pfafferott, Jens, and Ghiaus, Christian. 2011. “Free-Running Temperature and Potential for Free Cooling by Ventilation: A Case Study.” Energy & Buildings 43: 2705–11. DOI: 10.1016/j.enbuild.2011.06.017.
Incropera, Frank P., DeWitt, David P., Bergman, Theodore L., and Lavine, Adrienne S. 2007. Introduction to Heat Transfer. 5th ed. the University of Michigan: Wiley.
Jaworski, Maciej. 2014. “Thermal Performance of Building Element Containing Phase Change Material (PCM) Integrated with Ventilation System – An Experimental Study.” Applied Thermal Engineering 70: 665–74. DOI: 10.1016/j.applthermaleng.2014.05.093.
Jaworski, Maciej, Łapka, Piotr, and Furmański, Piotr. 2014. “Numerical Modelling and Experimental Studies of Thermal Behaviour of Building Integrated Thermal Energy Storage Unit in a Form of a Ceiling Panel.” Applied Energy 113. DOI: 10.1016/j.apenergy.2013.07.068.
Karaipekli, Ali, Sarı, Ahmet, and Kaygusuz, Kamil. 2007. “Thermal Conductivity Improvement of Stearic Acid Using Expanded Graphite and Carbon Fiber for Energy Storage Applications.” Renewable Energy 32: 2201–10. DOI: 10.1016/j.renene.2006.11.011.
King Jr., Joseph A. 2010. “Hydrocarbon-Based PCM Applications.”. Thermal Performance of the Exterior Envelopes of Whole Buildings XI International Conference: Thermal Mass VI Workshop.
Kottek, Markus, Grieser, Jorgen, Beck, Christoph, Rudolf, Bruno, and Rubel, Franz. 2006. “World Map of the Koppen-Geiger Climate Classification Updated.” METEOROLOGISCHE ZEITSCHRIFT 15 (3): 259–63. DOI: 10.1127/0941-2948/2006/0130.
Kumaresan, V., and Velraj, R. 2012. “Experimental Investigation of the Thermo-Physical Properties of Water–Ethylene Glycol Mixture Based CNT Nanofluids.” Thermochimica Acta 545: 180–86. DOI: 10.1016/j.tca.2012.07.017.
Kuznik, Frédéric, and Virgone, Joseph. 2009. “Experimental Assessment of a Phase Change Material for Wall Building Use.” Applied Energy 86 (10). DOI: 10.1016/j.apenergy.2009.01.004.
Lacroix, M. 1993. “Study of the Heat Transfer Behavior of a Latent Heat Thermal Energy Storage Unit with a Finned Tube.” International Journal of Heat and Mass Transfer 36 (8): 2083–92. DOI: 10.1016/S0017-9310(05)80139-5.
Lamberg, P., Lehtiniemi, R., and Henell, A. M. 2004. “Numerical and Experimental Investigation of Melting and Freezing Processes in Phase Change Material Storage.” INTERNATIONAL JOURNAL OF THERMAL SCIENCES 43 (3): 277–87. DOI: 10.1016/j.ijthermalsci.2003.07.001.
Lazaro, Ana, Dolado, Pablo, Marín, Jose M., and Zalba, Belen. 2009. “PCM–Air Heat Exchangers for Free-Cooling Applications in Buildings: Experimental Results of Two Real-Scale Prototypes.” Energy Conversion and Management 50 (3). DOI: 10.1016/j.enconman.2008.11.002.
Li, XingYi, Zhang, Zhaoliang, and Chen, Hao. 2013. “Pharmaceutical Nanotechnology: Development and Evaluation of Fast Forming Nano-Composite Hydrogel for Ocular Delivery of Diclofenac.” International Journal of Pharmaceutics 448: 96–100. DOI: 10.1016/j.ijpharm.2013.03.024.
Liu, Cheng, Yuan, Yanping, Zhang, Nan, Cao, Xiaoling, and Yang, Xiaojiao. 2014. “A Novel PCM of Lauric-Myristic-Stearic Acid/Expanded Graphite Composite for Thermal Energy Storage.” Materials Letters 120: 43–46. DOI: 10.1016/j.matlet.2014.01.051.
Liu, Ran, Liu, Lei, and Liu, Jing. 2009. “Massive Production of Nanoparticles via Mist Reaction.” Physica E: Low-Dimensional Systems and Nanostructures 41: 1197–1200. DOI: 10.1016/j.physe.2009.01.012.
Liu, Zhengxuan, Yu, Zhun (Jerry), Yang, Tingting, El Mankibi, Mohamed, Roccamena, Letizia, Sun, Ying, Sun, Pengcheng, Li, Shuisheng, and Zhang, Guoqiang. 2019. “Experimental and Numerical Study of a Vertical Earth-to-Air Heat Exchanger System Integrated with Annular Phase Change Material.” Energy Conversion and Management 186 (April): 433–49. DOI: 10.1016/j.enconman.2019.02.069.
LU, S. M., and YAN, W. J. 1995. “Development and Experimental Validation of a Full-Scale Solar Desiccant Enhanced Radiative Cooling System.” Renewable Energy 6 (7): 821–27. DOI: 10.1016/0960-1481(95)00069-V.
Marín, José M., Zalba, Belén, Cabeza, Luisa F., and Mehling, Harald. 2005. “Improvement of a Thermal Energy Storage Using Plates with Paraffin–Graphite Composite.” International Journal of Heat and Mass Transfer 48: 2561–70. DOI: 10.1016/j.ijheatmasstransfer.2004.11.027.
Medved, Sašo, and Arkar, Ciril. 2008. “Correlation between the Local Climate and the Free-Cooling Potential of Latent Heat Storage.” Energy & Buildings 40: 429–37. DOI: 10.1016/j.enbuild.2007.03.011.
Mehling, Harald, and Cabeza, Luisa F. 2008. Heat and Cold Storage with PCM an up to Date Introduction into Basics and Applications. 1st ed. Springer-Verlag Berlin Heidelberg. DOI: 10.1007/978-3-540-68557-9.
Mesalhy, Osama, Lafdi, Khalid, Elgafy, Ahmed, and Bowman, Keith. 2005. “Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage Using High Thermal Conductivity Porous Matrix.” Energy Conversion and Management 46: 847–67. DOI: 10.1016/j.enconman.2004.06.010.
Mills, Andrew, Farid, Mohammed, Selman, J. R., and Al-Hallaj, Said. 2006. “Thermal Conductivity Enhancement of Phase Change Materials Using a Graphite Matrix.” Applied Thermal Engineering 26: 1652–61. DOI: 10.1016/j.applthermaleng.2005.11.022.
Mosaffa, A. H., Farshi, L. Garousi, Infante Ferreira, C. A., and Rosen, M. A. 2014. “Energy and Exergy Evaluation of a Multiple-PCM Thermal Storage Unit for Free Cooling Applications.” Renewable Energy 68: 452–58. DOI: 10.1016/j.renene.2014.02.025.
Mosaffa, A. H., Infante Ferreira, C. A., Rosen, M. A., and Talati, F. 2013. “Thermal Performance Optimization of Free Cooling Systems Using Enhanced Latent Heat Thermal Storage Unit.” Applied Thermal Engineering 59 (1). DOI: 10.1016/j.applthermaleng.2013.06.011.
Mosaffa, A. H., Infante Ferreira, C. A., Talati, F., and Rosen, M. A. 2013. “Thermal Performance of a Multiple PCM Thermal Storage Unit for Free Cooling.” Energy Conversion and Management 67: 1–7. DOI: 10.1016/j.enconman.2012.10.018.
Muthuvelan, T., Nibhanupudi, K. M., Panchabikesan, K., Ramalingam, V., and Munisamy, R. 2018. “Experimental Investigation of Free Cooling Using Phase Change Material-Filled Air Heat Exchanger for Energy Efficiency in Buildings.” Advances in Building Energy Research 12 (2): 139–49. DOI: 10.1080/17512549.2016.1248487.
Nagano, K., Takeda, S., Mochida, T., and Shimakura, K. 2004. “Thermal Characteristics of a Direct Heat Exchange System between Granules with Phase Change Material and Air.” Applied Thermal Engineering 24: 2131–44. DOI: 10.1016/j.applthermaleng.2004.02.004.
Nagano, K., Takeda, S., Mochida, T., Shimakura, K., and Nakamura, T. 2006. “Study of a Floor Supply Air Conditioning System Using Granular Phase Change Material to Augment Building Mass Thermal Storage—Heat Response in Small Scale Experiments.” Energy and Buildings 38 (5). DOI: 10.1016/j.enbuild.2005.07.010.
Onishi, Masanori, Nakamura, Miki, and Sakai, Satoshi. 2009. “Radiative Cooling Estimate by Cloudiness, Temperature, and Dewpoint Temperature.” In The Seventh International Conference on Urban Climate.
Osterman, E., Butala, V., and Stritih, U. 2015. “PCM Thermal Storage System for ‘Free’ Heating and Cooling of Buildings.” Energy & Buildings 106: 125–33. DOI: 10.1016/j.enbuild.2015.04.012.
Paksoy, Halime Ö, SpringerLink, and North Atlantic Treaty Organization. 2007. Thermal Energy Storage for Sustainable Energy Consumption. Vol. 234. Dordrecht: Springer.
Panchabikesan, Karthik. 2017. “Investigation on The Charging Characteristics of a Phase Change Material Based Free Cooling System Integrated with Evaporative Cooling Unit.” PhD Thesis.
Panchabikesan, Karthik, Aroul Raj, Antony V., Abaranji, Sujatha, Vellaichamy, Pandiyarajan, and Ramalingam, Velraj. 2017. “Effect of Direct Evaporative Cooling during the Charging Process of Phase Change Material Based Storage System for Building Free Cooling Application—A Real Time Experimental Investigation.” Energy & Buildings 152: 250–63. DOI: 10.1016/j.enbuild.2017.07.037.
Panchabikesan, Karthik, Swami, Muthusamy V., Ramalingam, Velraj, and Haghighat, Fariborz. 2019. “Influence of PCM Thermal Conductivity and HTF Velocity during Solidification of PCM through the Free Cooling Concept – A Parametric Study.” Journal of Energy Storage 21. DOI: 10.1016/j.est.2018.11.005.
Panchabikesan, Karthik, Vellaisamy, Kumaresan, and Ramalingam, Velraj. 2017. “Passive Cooling Potential in Buildings under Various Climatic Conditions in India.” Renewable and Sustainable Energy Reviews 78: 1236–52. DOI: 10.1016/j.rser.2017.05.030.
Panchabikesan, Karthik, Vincent, Antony Aroul Raj, Ding, Yulong, and Ramalingam, Velraj. 2018. “Enhancement in Free Cooling Potential through PCM Based Storage System Integrated with Direct Evaporative Cooling (DEC) Unit.” Energy 144: 443–55. DOI: 10.1016/j.energy.2017.11.117.
Pardo, N., Vatopoulos, K., Krook-Riekkola, A., Moya, J. A., and Perez, A. 2012. “Heat and Cooling Demand and Market Perspective.” Joint Research Centre, Institute for Energy and Transport, European Commission. DOI: 10.2790/56532.
Pasupathy, A., and Velraj, R. 2008. “Effect of Double Layer Phase Change Material in Building Roof for Year Round Thermal Management.” Energy & Buildings 40: 193–203. DOI: 10.1016/j.enbuild.2007.02.016.
Peiró, Gerard, Gasia, Jaume, Miró, Laia, and Cabeza, Luisa F. 2015. “Experimental Evaluation at Pilot Plant Scale of Multiple PCMs (Cascaded) vs. Single PCM Configuration for Thermal Energy Storage.” Renewable Energy 83: 729–36. DOI: 10.1016/j.renene.2015.05.029.
Rady, Mohamed. 2009a. “Granular Phase Change Materials for Thermal Energy Storage: Experiments and Numerical Simulations.” Applied Thermal Engineering 29: 3149–59. DOI: 10.1016/j.applthermaleng.2009.04.018.
———. 2009b. “Thermal Performance of Packed Bed Thermal Energy Storage Units Using Multiple Granular Phase Change Composites.” Applied Energy 86: 2704–20. DOI: 10.1016/j.apenergy.2009.04.027.
Raj, V. Antony Aroul, and Velraj, R. 2010. “Review on Free Cooling of Buildings Using Phase Change Materials.” Renewable and Sustainable Energy Reviews 14 (9): 2819–29. DOI: 10.1016/j.rser.2010.07.004.
———. 2011. “Heat Transfer and Pressure Drop Studies on a PCM-Heat Exchanger Module for Free Cooling Applications.” International Journal of Thermal Sciences 50 (8): 1573–82. DOI: 10.1016/j.ijthermalsci.2011.01.025.
Roccamena, Letizia, El Mankibi, Mohamed, and Stathopoulos, Nikolaos. 2019. “Development and Validation of the Numerical Model of an Innovative PCM Based Thermal Storage System.” Journal of Energy Storage 24. DOI: 10.1016/j.est.2019.04.014.
Rouault, Fabien, Bruneau, Denis, Sebastian, Patrick, and Nadeau, Jean-Pierre. 2016. “Use of a Latent Heat Thermal Energy Storage System for Cooling a Light-Weight Building: Experimentation and Co-Simulation.” Energy & Buildings 127: 479–87. DOI: 10.1016/j.enbuild.2016.05.082.
Rubitherm, GmbH. 2019. PCM-RT Line. Vol. 2019.
Saman, W., Bruno, F., and Halawa, E. 2005. “Thermal Performance of PCM Thermal Storage Unit for a Roof Integrated Solar Heating System.” Solar Energy 78: 341–49. DOI: 10.1016/j.solener.2004.08.017.
Santamouris, Mat, 2007. Advances in Passive Cooling. London, UK: Earthscan.
Santamouris, Mattheos, and Kolokotsa, Dionysia. 2013. “Review: Passive Cooling Dissipation Techniques for Buildings and Other Structures: The State of the Art.” Energy & Buildings 57: 74–94. DOI: 10.1016/j.enbuild.2012.11.002.
Sanusi, Omar, Warzoha, Ronald, and Fleischer, Amy S. 2011. “Energy Storage and Solidification of Paraffin Phase Change Material Embedded with Graphite Nanofibers.” International Journal of Heat and Mass Transfer 54: 4429–36. DOI: 10.1016/j.ijheatmasstransfer.2011.04.046.
Sharma, Atul, Tyagi, V. V., Chen, C. R., and Buddhi, D. 2009. “Review on Thermal Energy Storage with Phase Change Materials and Applications.” Renewable & Sustainable Energy Reviews 13 (2): 318–45. DOI: 10.1016/j.rser.2007.10.005.
Solomon, Gnanadurai Ravikumar, Karthikeyan, S., and Velraj, Ramalingam. 2013. “Sub Cooling of PCM Due to Various Effects during Solidification in a Vertical Concentric Tube Thermal Storage Unit.” Applied Thermal Engineering 52: 505–11. DOI: 10.1016/j.applthermaleng.2012.12.030.
Sparrow, E. M., and Wachtler, K. P. 1978. “Transfer Coefficients on the Surfaces of a Transverse Plate Situated in a Duct Flow.” International Journal of Heat and Mass Transfer 21 (6): 761–67. DOI: 10.1016/0017-9310(78)90038-8.
Stathopoulos, N., El Mankibi, M., Issoglio, R., Michel, P., and Haghighat, F. 2016. “Air–PCM Heat Exchanger for Peak Load Management: Experimental and Simulation.” Solar Energy 132: 453–66. DOI: 10.1016/j.solener.2016.03.030.
Stathopoulos, N., El Mankibi, M., and Santamouris, M. 2017. “Numerical Calibration and Experimental Validation of a PCM-Air Heat Exchanger Model.” Applied Thermal Engineering 114: 1064–72. DOI: 10.1016/j.applthermaleng.2016.12.045.
Stritih, U., and Butala, V. 2010. “Experimental Investigation of Energy Saving in Buildings with PCM Cold Storage.” International Journal of Refrigeration 33 (8). DOI: 10.1016/j.ijrefrig.2010.07.017.
Stritih, Uroš. 2003. “Heat Transfer Enhancement in Latent Heat Thermal Storage System for Buildings.” Energy & Buildings 35: 1097–1104. DOI: 10.1016/j.enbuild.2003.07.001.
———. 2004. “An Experimental Study of Enhanced Heat Transfer in Rectangular PCM Thermal Storage.” International Journal of Heat and Mass Transfer 47: 2841–47. DOI: 10.1016/j.ijheatmasstransfer.2004.02.001.
Stritih, Uroš, and Butala, Vincenc. 2007. “Energy Saving in Building with PCM Cold Storage.” International Journal of Energy Research 31 (15): 1532–44. DOI: 10.1002/er.1318.
Swinbank, W. C. 2019. “Long-Wave Radiation from Clear Skies.” Quarterly Journal of the Royal Meteorological Society 89 (381): 339–48. DOI: 10.1002/qj.49708938105.
Takeda, S., Nagano, K., Mochida, T., and Shimakura, K. 2004. “Development of a Ventilation System Utilizing Thermal Energy Storage for Granules Containing Phase Change Material.” Solar Energy 77: 329–38. DOI: 10.1016/j.solener.2004.04.014.
Tay, N. H. S., Belusko, M., and Bruno, F. 2012. “Designing a PCM Storage System Using the Effectiveness-Number of Transfer Units Method in Low Energy Cooling of Buildings.” Energy & Buildings 50: 234–42. DOI: 10.1016/j.enbuild.2012.03.041.
Thambidurai, Muthuvelan, Panchabikesan, Karthik, Mohan N, Krishna, and Ramalingam, Velraj. 2015. “Review on Phase Change Material Based Free Cooling of Buildings—The Way toward Sustainability.” Journal of Energy Storage 4 (December): 74–88. DOI: 10.1016/j.est.2015.09.003.
TSI-Incorporated. 2019. Air Velocity Transducers. Vol. 2019. (https://tsi.com/products/ventilation-test-instruments/air-velocity-transducers/)
Turnpenny, J. R., Etheridge, D. W., and Reay, D. A. 2000. “Novel Ventilation Cooling System for Reducing Air Conditioning in Buildings. Part I: Testing and Theoretical Modelling.” Applied Thermal Engineering 20 (11): 1019–37. DOI: 10.1016/S1359-4311(99)00068-X.
———. 2001. “Novel Ventilation System for Reducing Air Conditioning in Buildings. Part II: Testing of Prototype.” Applied Thermal Engineering 21: 1203–17. https://doi.org/10.1016/S1359-4311(01)00003-5.
Vakilaltojjar, S. M., and Saman, W. 2001. “Analysis and Modelling of a Phase Change Storage System for Air Conditioning Applications.” Applied Thermal Engineering 21: 249–63. DOI: 10.1016/S1359-4311(00)00037-5.
Vaulx-en-Velin, France Station IDMP: 2019. Station IDMP: Measures. Vol. 2019. 04/04.
Velraj, R., Seeniraj, R. V., Hafner, B., Faber, C., and Schwarzer, K. 1997. “Experimental Analysis and Numerical Modelling of Inward Solidification on a Finned Vertical Tube for a Latent Heat Storage Unit.” Solar Energy 60 (5). DOI: 10.1016/S0038-092X(96)00167-3.
———. 1999. “HEAT TRANSFER ENHANCEMENT IN A LATENT HEAT STORAGE SYSTEM.”. Paper Presented at the ISES Solar World Congress, Taejon, South Korea, 24–29 August 1997.1. Solar Energy 65 (3). DOI: 10.1016/S0038-092X(98)00128-5.
Walsh, Brendan P., Murray, Sean N., and O’Sullivan, D. T. J. 2013. “Free-Cooling Thermal Energy Storage Using Phase Change Materials in an Evaporative Cooling System.” Applied Thermal Engineering 59: 618–26. DOI: 10.1016/j.applthermaleng.2013.06.008.
Wang, Wenbo, and Wang, Aiqin. 2009. “Preparation, Characterization and Properties of Superabsorbent Nanocomposites Based on Natural Guar Gum and Modified Rectorite.” Carbohydrate Polymers 77: 891–97. DOI: 10.1016/j.carbpol.2009.03.012.
Waqas, A., and Kumar, S. 2011. “Utilization of Latent Heat Storage Unit for Comfort Ventilation of Buildings in Hot and Dry Climates.” INTERNATIONAL JOURNAL OF GREEN ENERGY 8 (1): 1–24. DOI: 10.1080/15435075.2010.529406.
Waqas, Adeel, and Ud Din, Zia. 2013. “Phase Change Material (PCM) Storage for Free Cooling of Buildings—A Review.” Renewable and Sustainable Energy Reviews 18. DOI: 10.1016/j.rser.2012.10.034.
Waqas, Adeel, and Kumar, S. 2011. “Thermal Performance of Latent Heat Storage for Free Cooling of Buildings in a Dry and Hot Climate: An Experimental Study.” Energy and Buildings 43 (10). DOI: 10.1016/j.enbuild.2011.06.015.
———. 2013. “Phase Change Material (Pcm)-Based Solar Air Heating System For Residential Space Heating In Winter.” International Journal of Green Energy 10 (4): 402–26. DOI: 10.1080/15435075.2012.673518.
Yamaha, Motoi, and Misaki, Shinya. 2006. “The Evaluation of Peak Shaving by a Thermal Storage System Using Phase-Change Materials in Air Distribution Systems.” HVAC&R Research 12 (3): 861–69. DOI: 10.1080/10789669.2006.10391213.
Yanbing, Kang, Yi, Jiang, and Yinping, Zhang. 2003. “Modeling and Experimental Study on an Innovative Passive Cooling System—NVP System.” Energy & Buildings 35: 417–25. DOI: 10.1016/S0378-7788(02)00141-X.
Yanbing, Kang, Yinping, Zhang, Yi, Jiang, and Yingxin, Zhu. 1999. “A General Model for Analyzing the Thermal Characteristics of a Class of Latent Heat Thermal Energy Storage Systems.” Journal of Solar Energy Engineering 121 (4): 185–93. DOI: 10.1115/1.2888165.
Zalba, Belén, Mari´n, José M., Cabeza, Luisa F., and Mehling, Harald. 2004. “Free-Cooling of Buildings with Phase Change Materials.” International Journal of Refrigeration 27: 839–49. DOI: 10.1016/j.ijrefrig.2004.03.015.
Zalba, Belén, Marı́n, José M., Cabeza, Luisa F., and Mehling, Harald. 2003. “Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications.” Applied Thermal Engineering 23 (3): 251–83. DOI: 10.1016/S1359-4311(02)00192-8.
Zeng, J. L., Cao, Z., Yang, D. W., Sun, L. X., and Zhang, L. 2010. “Thermal Conductivity Enhancement of Ag Nanowires on an Organic Phase Change Material.” Journal of Thermal Analysis & Calorimetry 101 (1): 385–89. DOI:10.1007/s10973-009-0472-y.
Zhang, Shuo, and Niu, Jianlei. 2012. “Cooling Performance of Nocturnal Radiative Cooling Combined with Microencapsulated Phase Change Material (MPCM) Slurry Storage.” Energy & Buildings 54: 122–30. DOI: 10.1016/j.enbuild.2012.07.041.
Zhou, Guobing, Yang, Yongping, Wang, Xin, and Zhou, Shaoxiang. 2009. “Numerical Analysis of Effect of Shape-Stabilized Phase Change Material Plates in a Building Combined with Night Ventilation.” Applied Energy 86: 52–59. DOI: 10.1016/j.apenergy.2008.03.020.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top