Login | Register

Identifying and Isolating a Flat Band in 2D Systems

Title:

Identifying and Isolating a Flat Band in 2D Systems

Bae, Jun Hyung (2020) Identifying and Isolating a Flat Band in 2D Systems. Masters thesis, Concordia University.

[thumbnail of There is no table in this thesis]
Preview
Text (There is no table in this thesis) (application/pdf)
Bae_MASc_S2021.pdf - Accepted Version
Available under License Spectrum Terms of Access.
5MB

Abstract

Flat band systems are gaining popularity due to special properties. For instance, the strong correlation of electrons in flat bands leads to realization of unconventional superconductivity. Typically, such bands are only approximately flat and are engineered by fine tuning Vanderwaal’s structures. On the other hand, systems with perfectly flat bands provide a ground for studying exotic quasi-particles such as composite fermions in the fractional quantum Hall state. These flat bands, however, are induced by an external field. Here we explore other systems that host perfectly flat bands, namely the Kagome lattice and the Lieb lattice. One issue with these lattices, however, is that their flat bands are degenerate with other bands. This thesis will explore means to lift the degeneracy while preserving the flatness of the band. It will also demonstrate that the flatness is robust under certain modifications to the lattice and that, unlike suggested by past studies, breaking time-reversal symmetry is not sufficient to isolate the flat band. Instead, we will show that modulating the flux arising from a Chern-Simons type field gaps out the band without disturbing its flatness.

Divisions:Concordia University > Faculty of Arts and Science > Physics
Item Type:Thesis (Masters)
Authors:Bae, Jun Hyung
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Physics
Date:26 November 2020
Thesis Supervisor(s):Saurabh, Maiti
Keywords:flat band
ID Code:987750
Deposited By: JUN HYUNG BAE
Deposited On:23 Jun 2021 16:37
Last Modified:23 Jun 2021 16:37

References:

[1] E. Tang, J.-W. Mei, and X.-G. Wen, “High-Temperature Fractional Quantum Hall States,” en, Physical Review Letters, vol. 106, no. 23, p. 236802, Jun. 2011, ISSN: 0031-9007, 1079-7114. DOI: 10.1103/PhysRevLett.106.236802. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.106.236802
(visited on 08/27/2020).
[2] Y.-F. Wang, Z.-C. Gu, C.-D. Gong, and D. N. Sheng, “Fractional Quantum Hall Effect of Hard-Core Bosons in Topological Flat Bands,” en, Physical Review Letters, vol. 107, no. 14, p. 146803, Sep. 2011, arXiv: 1103.1686, ISSN: 0031-9007, 1079-7114. DOI:
10.1103/PhysRevLett.107.146803. [Online]. Available: http://arxiv. org/abs/1103.1686 (visited on 10/31/2020).
[3] B. Jaworowski, “Wigner crystallization in topological flat bands,” en, New J. Phys., p. 21, 2018.
[4] Z. Liu, F. Liu, and Y.-S. Wu, “Exotic electronic states in the world of flat bands: From theory to material,” en, Chinese Physics B, vol. 23, no. 7, p. 077308, Jul. 2014, ISSN: 1674-1056. DOI: 10.1088/1674-1056/23/7/077308. [Online]. Available: https://iopscience.iop.org/article/10.1088/1674-1056/23/7/
077308 (visited on 12/09/2020).
[5] C. Wu, D. Bergman, L. Balents, and S. Das Sarma, “Flat Bands and Wigner Crystallization in the Honeycomb Optical Lattice,” en, Physical Review Letters, vol. 99, no. 7, p. 070401, Aug. 2007, ISSN: 0031-9007, 1079-7114. DOI: 10.1103/PhysRevLett. 99.070401. [Online]. Available: https://link.aps.org/doi/10.1103/ PhysRevLett.99.070401 (visited on 12/09/2020).
[6] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene superlattices,” en, Nature, vol. 556, no. 7699, pp. 43–50, Apr. 2018, ISSN: 0028-0836, 1476-4687. DOI: 10.1038/ nature26160. [Online]. Available: http://www.nature.com/articles/ nature26160 (visited on 08/27/2020).
[7] L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, “Superconductivity and strong correlations in moire flat bands,” en,´ Nature Physics, vol. 16, no. 7, pp. 725–733, Jul. 2020, ISSN: 1745-2473, 1745-2481. DOI: 10.1038/s41567-020-0906-9. [Online]. Available: http://www.nature.com/articles/s41567-020-0906-9
(visited on 08/27/2020).
[8] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, “Correlated insulator behaviour at half-filling in magic-angle graphene superlattices,” en, Nature, vol. 556, no. 7699, pp. 80–84, Apr. 2018, ISSN: 0028-0836, 1476-4687. DOI:
10.1038/nature26154. [Online]. Available: http://www.nature.com/ articles/nature26154 (visited on 08/27/2020).
[9] A. Dauphin, M. Muller, and M. A. Martin-Delgado, “Quantum simulation of a topo-¨ logical Mott insulator with Rydberg atoms in a Lieb lattice,” en, Physical Review A, vol. 93, no. 4, p. 043611, Apr. 2016, ISSN: 2469-9926, 2469-9934. DOI: 10.1103/ PhysRevA.93.043611. [Online]. Available: https://link.aps.org/doi/
10.1103/PhysRevA.93.043611 (visited on 10/31/2020).
[10] N. R. Chebrolu, B. L. Chittari, and J. Jung, “Flat bands in twisted double bilayer graphene,” en, Physical Review B, vol. 99, no. 23, p. 235417, Jun. 2019, ISSN: 2469-9950, 24699969. DOI: 10.1103/PhysRevB.99.235417. [Online]. Available: https: //link.aps.org/doi/10.1103/PhysRevB.99.235417 (visited on
10/17/2020).
[11] K. Kim, A. DaSilva, S. Huang, B. Fallahazad, S. Larentis, T. Taniguchi, K. Watanabe, B. J. LeRoy, A. H. MacDonald, and E. Tutuc, “Tunable moire bands and strong corre-´ lations in small-twist-angle bilayer graphene,” en, Proceedings of the National Academy of Sciences, vol. 114, no. 13, pp. 3364–3369, Mar. 2017, ISSN: 0027-8424, 1091-6490.
DOI: 10.1073/pnas.1620140114. [Online]. Available: http://www.pnas. org/lookup/doi/10.1073/pnas.1620140114 (visited on 11/01/2020).
[12] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, “Tuning superconductivity in twisted bilayer graphene,” en, Science, vol. 363, no. 6431, pp. 1059–1064, Mar. 2019, ISSN: 0036-8075, 10959203. DOI: 10.1126/science.aav1910. [Online]. Available: https://www. sciencemag.org/lookup/doi/10.1126/science.aav1910 (visited on
11/01/2020).
[13] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, “Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene,” en, Nature, vol. 574, no. 7780, pp. 653–657, Oct. 2019, ISSN: 0028-0836, 1476-4687. DOI:
10.1038/s41586-019-1695-0. [Online]. Available: http://www.nature.
com/articles/s41586-019-1695-0 (visited on 11/01/2020).
[14] M. Fidrysiak, M. Zegrodnik, and J. Spałek, “Unconventional topological superconductivity and phase diagram for an effective two-orbital model as applied to twisted bilayer graphene,” en, Physical Review B, vol. 98, no. 8, p. 085436, Aug. 2018, ISSN: 24699950, 2469-9969. DOI: 10.1103/PhysRevB.98.085436. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.98.085436 (visited on
10/17/2020).
[15] Y. Xu and H. Pu, “Building Flat-Band Lattice Models from Gram Matrices,” en, arXiv:2002.06767 [cond-mat], Sep. 2020, arXiv: 2002.06767. [Online]. Available: http://arxiv. org/abs/2002.06767 (visited on 10/24/2020).
[16] D. L. Bergman, C. Wu, and L. Balents, “Band touching from real-space topology in frustrated hopping models,” en, Physical Review B, vol. 78, no. 12, p. 125104, Sep. 2008,
ISSN: 1098-0121, 1550-235X. DOI: 10.1103/PhysRevB.78.125104. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevB.78.125104
(visited on 08/27/2020).
[17] D. Green, L. Santos, and C. Chamon, “Isolated Flat Bands and Spin-1 Conical Bands in Two-Dimensional Lattices,” en, Physical Review B, vol. 82, no. 7, p. 075104, Aug. 2010, arXiv: 1004.0708, ISSN: 1098-0121, 1550-235X. DOI: 10.1103/PhysRevB. 82.075104. [Online]. Available: http://arxiv.org/abs/1004.0708 (visited on 08/27/2020).
[18] Y. Zhou, K. Kanoda, and T.-K. Ng, “Quantum spin liquid states,” en, Reviews of Modern Physics, vol. 89, no. 2, p. 025003, Apr. 2017, ISSN: 0034-6861, 1539-0756. DOI: 10. 1103/RevModPhys.89.025003. [Online]. Available: http://link.aps. org/doi/10.1103/RevModPhys.89.025003 (visited on 10/31/2020).
[19] T.-H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-Rivera, C. Broholm, and Y. S. Lee, “Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet,” en, Nature, vol. 492, no. 7429, pp. 406–410, Dec. 2012, ISSN: 00280836, 1476-4687. DOI: 10.1038/nature11659. [Online]. Available: http:// www.nature.com/articles/nature11659 (visited on 10/31/2020).
[20] L. Ye, M. Kang, J. Liu, F. von Cube, C. R. Wicker, T. Suzuki, C. Jozwiak, A. Bostwick, E. Rotenberg, D. C. Bell, L. Fu, R. Comin, and J. G. Checkelsky, “Massive Dirac fermions in a ferromagnetic kagome metal,” en, Nature, vol. 555, no. 7698, pp. 638–642, Mar. 2018, ISSN: 0028-0836, 1476-4687. DOI: 10.1038/nature25987. [Online]. Available: http://www.nature.com/articles/nature25987 (visited on
10/31/2020).
[21] A. Julku, S. Peotta, T. I. Vanhala, D.-H. Kim, and P. Torm¨ a, “Geometric Origin of Su-¨ perfluidity in the Lieb-Lattice Flat Band,” en, Physical Review Letters, vol. 117, no. 4, p. 045303, Jul. 2016, ISSN: 0031-9007, 1079-7114. DOI: 10.1103/PhysRevLett. 117.045303. [Online]. Available: https://link.aps.org/doi/10.1103/ PhysRevLett.117.045303 (visited on 10/31/2020).
[22] H. Tamura, K. Shiraishi, T. Kimura, and H. Takayanagi, “Flat-band ferromagnetism in quantum dot superlattices,” en, Physical Review B, vol. 65, no. 8, p. 085324, Feb. 2002, ISSN: 0163-1829, 1095-3795. DOI: 10.1103/PhysRevB.65.085324. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.65.085324
(visited on 10/31/2020).
[23] S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, and Y. Takahashi, “Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice,” en, arXiv:1506.00587 [cond-mat], Nov. 2015, arXiv: 1506.00587. DOI: 10.1126/sciadv.1500854. [Online]. Available: http://arxiv.org/abs/1506.00587 (visited on 11/26/2020).
[24] W. Jiang, H. Huang, and F. Liu, “A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism,” en, Nature Communications, vol. 10, no. 1, p. 2207, Dec. 2019, ISSN: 2041-1723. DOI: 10.1038/s41467-019-10094-3. [Online]. Available: http://www.nature.com/articles/s41467-019-10094-3
(visited on 10/31/2020).
[25] B. Cui, X. Zheng, J. Wang, D. Liu, S. Xie, and B. Huang, “Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism,” en, Nature Communications, vol. 11, no. 1, p. 66, Dec. 2020, ISSN: 2041-1723. DOI: 10.1038/s41467019-13794-y. [Online]. Available: http://www.nature.com/articles/ s41467-019-13794-y (visited on 10/31/2020).
[26] L. Du, Q. Chen, A. D. Barr, A. R. Barr, and G. A. Fiete, “Floquet Hofstadter butterfly on the kagome and triangular lattices,” en, Physical Review B, vol. 98, no. 24, p. 245145, Dec. 2018, ISSN: 2469-9950, 2469-9969. DOI: 10.1103/PhysRevB.98.245145. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.98. 245145 (visited on 11/22/2020).
[27] F. Yılmaz, F. N. Unal, and M.¨ O. Oktel, “Evolution of the Hofstadter butterfly in a tunable¨ optical lattice,” en, Physical Review A, vol. 91, no. 6, p. 063628, Jun. 2015, ISSN: 10502947, 1094-1622. DOI: 10.1103/PhysRevA.91.063628. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.91.063628 (visited on
11/22/2020).
[28] G. V. Dunne, “Aspects Of Chern-Simons Theory,” en, in Aspects topologiques de la physique en basse dimension. Topological aspects of low dimensional systems, A. Comtet, T. Jolicœur, S. Ouvry, and F. David, Eds., vol. 69, Series Title: Les Houches - Ecole d’Ete de Physique Theorique, Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 177– 263, ISBN: 978-3-540-66909-8. DOI: 10.1007/3-540-46637-1_3. [Online]. Available: http://link.springer.com/10.1007/3-540-46637-1_3
(visited on 11/22/2020).
[29] S. Maiti and T. Sedrakyan, “Fermionization of bosons in a flat band,” en, Physical Review B, vol. 99, no. 17, p. 174418, May 2019, ISSN: 2469-9950, 2469-9969. DOI: 10.1103/ PhysRevB.99.174418. [Online]. Available: https://link.aps.org/doi/
10.1103/PhysRevB.99.174418 (visited on 11/22/2020).
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top