Shabanijafroudi, Nima (2020) Buckling and Postbuckling response of laminated composite plates with interlaminar flaws. PhD thesis, Concordia University.
Preview |
Text (application/pdf)
5MBShabanijafroudi_PhD_S2021.pdf - Accepted Version |
Abstract
High stiffness and strength, corrosion resistance, and ease of manufacturing have made laminated composites an excellent replacement for isotropic materials. The outstanding properties of composites especially appeal to industries such as the aerospace industry where lightweighting is of great importance. Despite the mentioned advantages, susceptibility to defects is a major drawback in using these materials. Being composed of several layers bonded together using an adhesive material, delamination or debonding of layers is one of the most common flaws in composite laminates. Delamination may drastically impact the mechanical behavior of laminates, especially in unstable conditions. Larger deflections and higher levels of stresses that a laminate experiences in the postbuckling state may, in turn, lead to the growth of a delamination. Given the complications that are caused by delamination, keeping delaminated plates in service requires an in-depth understanding of their postbuckling behavior including the possibility of the growth of the delamination. The objective of this thesis is to develop a comprehensive mathematical and mechanical methodology for accurately predicting the buckling and postbuckling behavior of delaminated composite plates including the fracture mechanical phenomena involved in the postbuckling state.
In all the formulations derived in the framework of the new methodology, the deformations of laminates are approximated using the first-order shear deformation theory and the equilibrium equations were derived using the principle of stationary total potential energy and the Ritz method. In both linear buckling and nonlinear postbuckling analyses, the effect of large rotations is incorporated by adopting Von Kármán’s approximations of the Green strain tensor.
The present thesis work approaches the buckling and postbuckling behavior of delaminated plates through nonlinear analyses. However, conducting nonlinear analyses requires a preliminary knowledge of the potential buckling modes (local, mixed or global) and the loading level at which they may emerge. This preliminary information is used for determining the optimal configuration of imperfections to be incorporated in the nonlinear analyses. In the present work, a novel eigenvalue buckling solution was developed for the required preliminary information. The developed formulation in order to account for the prebuckling stress field nonuniformity caused by in-plane constraints, bases the eigenvalue analysis on a calculated stress field obtained using a prebuckling stress analysis.
For interrogating the details of the postbuckling behavior of delaminated plates, a state of the art postbuckling solution is proposed. The proposed methodology uses a new partitioning scheme that splits the delaminated plate using the plane of the delamination. Outside the delaminated regions the bond between the sublaminates is modeled using a penalty function method. The penalty functions model the effect of an extremely thin layer of elastic adhesive gluing the sublaminates together. The use of the penalty function method offers the advantage of providing the distribution of interlaminar traction in the plane of the delamination. Given the availability of interlaminar tractions in the vicinity of the borders of the delaminated region, Irwin’s crack closure integrals were integrated into the solution for calculating strain energy release rates corresponding to the three fracture modes separately.
Given the importance and the abundant industrial use of curved composite panels especially in the aerospace industries, in an attempt to extend the applicability of the developed methodology to delaminated curved panels, an eigenvalue buckling solution for curved plates subjected to rotational edge restraints is developed.
The validity of the deliverable results of each of the pieces of the developed methodology was verified by comparing the results with experimental data and numerical results obtained using finite element analyses.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering |
---|---|
Item Type: | Thesis (PhD) |
Authors: | Shabanijafroudi, Nima |
Institution: | Concordia University |
Degree Name: | Ph. D. |
Program: | Mechanical Engineering |
Date: | 3 November 2020 |
Thesis Supervisor(s): | Ganesan, Rajamohan and Ngô, Anh Dung |
Keywords: | Composite, Delamination, Buckling, Postbuckling, Delamination growth |
ID Code: | 987960 |
Deposited By: | Nima Shabanijafroudi |
Deposited On: | 29 Jun 2021 21:00 |
Last Modified: | 29 Jun 2021 21:00 |
References:
[1] S. Sridharan, Delamination Behaviour of Composites, 2008. doi:10.1533/9781845694821.[2] V. V. Bolotin, Delaminations in composite structures: Its origin, buckling, growth and stability, Compos. Part B Eng. 27 (1996) 129–145. doi:10.1016/1359-8368(95)00035-6.
[3] H. Chai, C.D. Babcock, W.G. Knauss, One dimensional modelling of failure in laminated plates by delamination buckling, Int. J. Solids Struct. 17 (1981) 1069–1083. doi:10.1016/0020-7683(81)90014-7.
[4] H. Chai, C.D. Babcock, W.G. Knauss, One dimensional modelling of failure in laminated plates by delamination buckling, Int. J. Solids Struct. 17 (1981) 1069–1083. doi:10.1016/0020-7683(81)90014-7.
[5] W.L. Yin, The Effects of Laminated Structure on Delamination Buckling and Growth, J. Compos. Mater. 22 (1988) 502–517. doi:10.1177/002199838802200601.
[6] X.R. Zhuo, H.S. Jang, H.G. Beom, Delamination buckling of a thin film bonded to an orthotropic substrate, Int. J. Precis. Eng. Manuf. 16 (2015) 323–333. doi:10.1007/s12541-015-0043-z.
[7] S. Wang, C.M. Harvey, B. Wang, A. Watson, Post-local buckling-driven delamination in bilayer composite beams, Compos. Struct. 133 (2015) 1058–1066. doi:10.1016/j.compstruct.2015.08.012.
[8] G.A. Kardomateas, Initial post-buckling and growth behavior of internal delaminations in composite plates, in: Am. Soc. Mech. Eng., 1993: pp. 1–8.
[9] P.L. Larsson, On multiple delamination buckling and growth in composite plates, Int. J. Solids Struct. 27 (1991) 1623–1637. doi:10.1016/0020-7683(91)90065-N.
[10] G.B. Chai, W.M. Banks, J. Rhodes, The instability behaviour of laminated panels with elastically rotationally restrained edges, Compos. Struct. 19 (1991) 41–66.
[11] K.N. Shivakumar, J.D. Whitcomb, Buckling of a Sublaminate in a Quasi-Isotropic Composite Laminate, J. Compos. Mater. 19 (1985) 2–18. doi:10.1177/002199838501900101.
[12] B.D. Davidson, Delamination Buckling: Theory and Experiment, J. Compos. Mater. 25 (1991) 1351–1378. doi:10.1177/002199839102501007.
[13] W.M. Kyoung, C.G. Kim, Delamination Buckling and Growth of Composite Laminated Plates with Transverse Shear Deformation, J. Compos. Mater. 29 (1995) 2047–2068. doi:10.1177/002199839502901506.
[14] H. Kim, K.T. Kedward, A method for modeling the local and global buckling of delaminated composite plates, Compos. Struct. 44 (1999) 43–53. doi:10.1016/S0263-8223(98)00117-2.
[15] K.F. Nilsson, L.E. Asp, J.E. Alpman, L. Nystedt, Delamination buckling and growth for delaminations at different depths in a slender composite panel, Int. J. Solids Struct. 38 (2001) 3039–3071. doi:10.1016/S0020-7683(00)00189-X.
[16] G.J. Simitses, S. Sallam, W.L. Yin, Effect of delamination of axially loaded homogeneous laminated plates, AIAA J. 23 (1985) 1437–1444. doi:10.2514/3.9104.
[17] S. Sallam, G.J. Simitses, Delamination buckling and growth of flat, cross-ply laminates, Compos. Struct. 4 (1985) 361–381. doi:10.1016/0263-8223(85)90033-9.
[18] G.A. Kardomateas, D.W. Schmueser, Buckling and postbuckling of delaminated composites under compressive loads including transverse shear effects, AIAA J. 26 (1988) 337–343. doi:10.2514/3.9894.
[19] H.P. Chen, Shear deformation theory for compressive delamination buckling and growth, AIAA J. 29 (1991) 813–819. doi:10.2514/3.10661.
[20] I. Sheinman, Y. Reichman, A study of buckling and vibration of laminated shallow curved panels, Int. J. Solids Struct. 29 (1992) 1329–1338. doi:10.1016/0020-7683(92)90081-4.
[21] C.W. Yap, G.B. Chai, Analytical and numerical studies on the buckling of delaminated composite beams, Compos. Struct. 80 (2007) 307–319. doi:10.1016/j.compstruct.2006.05.010.
[22] M. Kharazi, H.R. Ovesy, Postbuckling behavior of composite plates with through-the-width delaminations, Thin-Walled Struct. 46 (2008) 939–946. doi:10.1016/j.tws.2008.01.005.
[23] M. Kharazi, H.R. Ovesy, M. Taghizadeh, Buckling of the composite laminates containing through-the-width delaminations using different plate theories, Compos. Struct. 92 (2010) 1176–1183. doi:10.1016/j.compstruct.2009.10.019.
[24] H.R. Ovesy, M. Asghari Mooneghi, M. Kharazi, Post-buckling analysis of delaminated composite laminates with multiple through-the-width delaminations using a novel layerwise theory, Thin-Walled Struct. 94 (2015) 98–106. doi:10.1016/j.tws.2015.03.028.
[25] H.R. Ovesy, M. Kharazi, Compressional stability behavior of composite plates with through-the-width and embedded delaminations by using first order shear deformation theory, in: Comput. Struct., Elsevier Ltd, 2011: pp. 1829–1839. doi:10.1016/j.compstruc.2010.10.016.
[26] J.H. Xue, Q.Z. Luo, F. Han, R.H. Liu, Two-dimensional analyses of delamination buckling of symmetrically cross-ply rectangular laminates, Appl. Math. Mech. (English Ed. 34 (2013) 597–612. doi:10.1007/s10483-013-1694-7.
[27] H.R. Ovesy, M. Taghizadeh, M. Kharazi, Post-buckling analysis of composite plates containing embedded delaminations with arbitrary shape by using higher order shear deformation theory, Compos. Struct. 94 (2012) 1243–1249. doi:10.1016/j.compstruct.2011.11.011.
[28] N. Kharghani, C. Guedes Soares, Behavior of composite laminates with embedded delaminations, Compos. Struct. 150 (2016) 226–239. doi:10.1016/j.compstruct.2016.04.042.
[29] H.J. Kim, C.S. Hong, Buckling and postbuckling behavior of composite laminates with a delamination, Compos. Sci. Technol. 57 (1997) 557–564. doi:10.1016/S0266-3538(97)00011-0.
[30] M.K. Yeh, C.M. Tan, Buckling of Elliptically Delaminated Composite Plates, J. Compos. Mater. 28 (1994) 36–52. doi:10.1177/002199839402800103.
[31] M. Ali Kouchakzadeh, H. Sekine, Compressive buckling analysis of rectangular composite laminates containing multiple delaminations, Compos. Struct. 50 (2000) 249–255. doi:10.1016/S0263-8223(00)00100-8.
[32] A. Tafreshi, T. Oswald, Global buckling behaviour and local damage propagation in composite plates with embedded delaminations, Int. J. Press. Vessel. Pip. 80 (2003) 9–20. doi:10.1016/S0308-0161(02)00152-7.
[33] H. Hosseini-toudeshky, S. Hosseini, B. Mohammadi, Delamination buckling growth in laminated composites using layerwise-interface element, Compos. Struct. 92 (2010) 1846–1856. doi:10.1016/j.compstruct.2010.01.013.
[34] Z. Juhász, A. Szekrényes, Progressive buckling of a simply supported delaminated orthotropic rectangular composite plate, Int. J. Solids Struct. 69–70 (2015) 217–229. doi:10.1016/j.ijsolstr.2015.05.028.
[35] Z. Kutlu, fu K. Chang, Modeling Compression Failure of laminated Composites Containing Multiple Through-the-Width Delaminations, J. Compos. Mater. 26 (1992) 350–387. doi:10.1177/002199839202600303.
[36] S.F. Nikrad, S. Keypoursangsari, H. Asadi, A.H. Akbarzadeh, Z.T. Chen, Computational study on compressive instability of composite plates with off-center delaminations, Comput. Methods Appl. Mech. Eng. 310 (2016) 429–459. doi:10.1016/j.cma.2016.07.021.
[37] A. Köllner, M. Kashtalyan, I. Guz, C. Völlmecke, On the interaction of delamination buckling and damage growth in cross-ply laminates, Int. J. Solids Struct. 202 (2020) 912–928. doi:10.1016/j.ijsolstr.2020.05.035.
[38] Y. Zhang, S. Wang, Buckling, post-buckling and delamination propagation in debonded composite laminates Part 1 : Theoretical development, Compos. Struct. 88 (2009) 121–130. doi:10.1016/j.compstruct.2008.02.013.
[39] M. Marjanović, D. Vuksanović, Layerwise solution of free vibrations and buckling of laminated composite and sandwich plates with embedded delaminations, Compos. Struct. 108 (2014) 9–20. doi:10.1016/j.compstruct.2013.09.006.
[40] E.J. Barbero, J.N. Reddy, Modeling of delamination in composite laminates using a layer-wise plate theory, Int. J. Solids Struct. 28 (1991) 373–388. doi:10.1016/0020-7683(91)90200-Y.
[41] D.H. Li, Delamination and transverse crack growth prediction for laminated composite plates and shells, Comput. Struct. 177 (2016) 39–55. doi:10.1016/j.compstruc.2016.07.011.
[42] N. Kharghani, C. Guedes Soares, Influence of different parameters on the deflection of composite laminates containing through-the-width delamination using Layerwise HSDT, Compos. Struct. 132 (2015) 341–349. doi:10.1016/j.compstruct.2015.05.040.
[43] I. Sheinman, M. Soffer, Post-buckling analysis of composite delaminated beams, Int. J. Solids Struct. 27 (1991) 639–646. doi:10.1016/0020-7683(91)90218-5.
[44] H. Chai, C.D. Babcock, Two-Dimensional Modelling of Compressive Failure in Delaminated Laminates, J. Compos. Mater. 19 (1985) 67–98. doi:10.1177/002199838501900105.
[45] N. Hu, Buckling analysis of delaminated laminates with consideration of contact in buckling mode, Int. J. Numer. Methods Eng. 44 (1999) 1457–1479. doi:10.1002/(SICI)1097-0207(19990410)44:10<1457::AID-NME545>3.0.CO;2-9.
[46] A. Tafreshi, Delamination buckling and postbuckling in composite cylindrical shells under external pressure, Thin-Walled Struct. 42 (2004) 1379–1404. doi:10.1016/j.tws.2004.05.008.
[47] A. Tafreshi, Delamination buckling and postbuckling in composite cylindrical shells under combined axial compression and external pressure, Compos. Struct. 72 (2006) 401–418. doi:10.1016/j.compstruct.2005.01.009.
[48] A. Tafreshi, Efficient modelling of delamination buckling in composite cylindrical shells under axial compression, Compos. Struct. 64 (2004) 511–520. doi:10.1016/j.compstruct.2003.09.050.
[49] L.X. Peng, K.M. Liew, S. Kitipornchai, Buckling and free vibration analyses of stiffened plates using the FSDT mesh-free method, J. Sound Vib. 289 (2006) 421–449. doi:10.1016/j.jsv.2005.02.023.
[50] A. Karrech, M. Elchalakani, M. Attar, A.C. Seibi, Buckling and post-buckling analysis of geometrically non-linear composite plates exhibiting large initial imperfections, Compos. Struct. 174 (2017) 134–141. doi:10.1016/j.compstruct.2017.04.029.
[51] M. Aydogdu, T. Aksencer, Buckling of cross-ply composite plates with linearly varying In-plane loads, Compos. Struct. 183 (2017) 221–231. doi:10.1016/j.compstruct.2017.02.085.
[52] M. Song, J. Yang, S. Kitipornchai, Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Compos. Part B Eng. 134 (2018) 106–113. doi:10.1016/j.compositesb.2017.09.043.
[53] J.M. Whitney, Shear correction factors for orthotropic laminates under static load, J. Appl. Mech. Trans. ASME. 40 (1973) 302–304. doi:10.1115/1.3422950.
[54] P. Gaudenzi, P. Perugini, F. Spadaccia, Post-buckling analysis of a delaminated composite plate under compression, Compos. Struct. 40 (1997) 231–238. doi:10.1016/S0263-8223(98)00013-0.
[55] S.F. Hwang, S.M. Huang, Postbuckling behavior of composite laminates with two delaminations under uniaxial compression, Compos. Struct. 68 (2005) 157–165. doi:10.1016/j.compstruct.2004.03.010.
[56] F. Cappello, D. Tumino, Numerical analysis of composite plates with multiple delaminations subjected to uniaxial buckling load, Compos. Sci. Technol. 66 (2006) 264–272. doi:10.1016/j.compscitech.2005.04.036.
[57] S.L. Donaldson, The effect of interlaminar fracture properties on the delamination buckling of composite laminates, Compos. Sci. Technol. 28 (1987) 33–44. doi:10.1016/0266-3538(87)90060-1.
[58] R.G. Wang, L. Zhang, J. Zhang, W.B. Liu, X.D. He, Numerical analysis of delamination buckling and growth in slender laminated composite using cohesive element method, Comput. Mater. Sci. 50 (2010) 20–31. doi:10.1016/j.commatsci.2010.07.003.
[59] J.D. Whitcomb, Analysis of instability-related growth of a through-width delamination, NASA Tech. Memo. (1984).
[60] J.D. Whitcomb, Finite Element Analysis of Instability Related Delamination Growth, J. Compos. Mater. 15 (1981) 403–426. doi:10.1177/002199838101500502.
[61] A. Chattopkdhyay, H. Gu, New higher order plate theory in modeling delamination buckling of composite laminates, AIAA J. 32 (1994) 1709–1716. doi:10.2514/3.12163.
[62] K. Wang, L. Zhao, H. Hong, Y. Gong, J. Zhang, N. Hu, An analytical model for evaluating the buckling, delamination propagation, and failure behaviors of delaminated composites under uniaxial compression, Compos. Struct. 223 (2019). doi:10.1016/j.compstruct.2019.110937.
[63] H. Chai, Three-dimensional fracture analysis of thin-film debonding, 1990.
[64] B. Mohammadi, F. Shahabi, S.A.M. Ghannadpour, Post-buckling delamination propagation analysis using interface element with de-cohesive constitutive law, in: Procedia Eng., 2011: pp. 1797–1802. doi:10.1016/j.proeng.2011.04.299.
[65] S. Wang, Y. Zhang, Buckling, post-buckling and delamination propagation in debonded composite laminates Part 2: Numerical applications, Compos. Struct. 88 (2009) 131–146. doi:10.1016/j.compstruct.2008.02.012.
[66] N. Kharghani, C. Guedes Soares, Experimental, numerical and analytical study of buckling of rectangular composite laminates, Eur. J. Mech. A/Solids. 79 (2020) 103869. doi:10.1016/j.euromechsol.2019.103869.
[67] M.A. Crisfield, A fast incremental/iterative solution procedure that handles “snap-through,” Comput. Struct. 13 (1981) 55–62. doi:10.1016/0045-7949(81)90108-5.
[68] K. Liang, Q. Sun, Buckling and post-buckling analysis of the delaminated composite plates using the Koiter–Newton method, Compos. Struct. 168 (2017) 266–276. doi:10.1016/j.compstruct.2017.01.038.
[69] S. Nojavan, D. Schesser, Q.D. Yang, An in situ fatigue-CZM for unified crack initiation and propagation in composites under cyclic loading, 146 (2016) 34–49. doi:10.1016/j.compstruct.2016.02.060.
[70] M. Cetkovic, Thermal buckling of laminated composite plates using layerwise displacement model, Compos. Struct. 142 (2016) 238–253. doi:10.1016/j.compstruct.2016.01.082.
[71] A.W. Leissa, Buckling of composite plates, Compos. Struct. 1 (1983) 51–66. doi:10.1016/0263-8223(83)90016-8.
[72] R.M. Jones, Thermal buckling of uniformly heated unidirectional and symmetric cross-ply laminated fiber-reinforced composite uniaxial in-plane restrained simply supported rectangular plates, Compos. Part A Appl. Sci. Manuf. 36 (2005) 1355–1367. doi:10.1016/j.compositesa.2005.01.028.
[73] M.P. Nemeth, M.P. Nemeth, Buckling Behavior of Long Anisotropic Plates Subjected To Restrained Thermal Expansion and Mechanical Loads Subjected To Restrained Thermal Expansion and Mechanical Loads, 5739 (2016). doi:10.1080/014957300750040122.
[74] M.P. Nemeth, Buckling of long compression-loaded anisotropic plates restrained against inplane lateral and shear deformations, in: 44th AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., 2003: pp. 1–37.
[75] L.-C. Shiau, S.-Y. Kuo, C.-Y. Chen, Thermal buckling behavior of composite laminated plates, Compos. Struct. 92 (2010) 508–514. doi:10.1016/j.compstruct.2009.08.035.
[76] A.N. Sherbourne, M.D. Pandey, Differential quadrature method in the buckling analysis of beams and composite plates, Comput. Struct. 40 (1991) 903–913. doi:http://dx.doi.org/10.1016/0045-7949(91)90320-L.
[77] S.F. Bassily, S.M. Dickinson, Buckling and lateral vibration of rectangular plates subject to inplane loads-a Ritz approach, J. Sound Vib. 24 (1972) 219–239. doi:10.1016/0022-460X(72)90951-0.
[78] S.Y. Kuo, L.C. Shiau, Buckling and vibration of composite laminated plates with variable fiber spacing, Compos. Struct. 90 (2009) 196–200. doi:10.1016/j.compstruct.2009.02.013.
[79] Z. Gürdal, B.F. Tatting, C.K. Wu, Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response, Compos. Part A Appl. Sci. Manuf. 39 (2008) 911–922. doi:10.1016/j.compositesa.2007.11.015.
[80] G. Raju, Z. Wu, B.C. Kim, P.M. Weaver, Prebuckling and buckling analysis of variable angle tow plates with general boundary conditions, Compos. Struct. 94 (2012) 2961–2970. doi:10.1016/j.compstruct.2012.04.002.
[81] Z. Wu, P.M. Weaver, G. Raju, B. Chul Kim, Buckling analysis and optimisation of variable angle tow composite plates, Thin-Walled Struct. 60 (2012) 163–172. doi:10.1016/J.TWS.2012.07.008.
[82] B.H. Coburn, Z. Wu, P.M. Weaver, Buckling analysis of stiffened variable angle tow panels, Compos. Struct. 111 (2014) 259–270. doi:10.1016/J.COMPSTRUCT.2013.12.029.
[83] M. Song, J. Yang, S. Kitipornchai, W. Zhu, Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates, Int. J. Mech. Sci. 131–132 (2017) 345–355. doi:10.1016/j.ijmecsci.2017.07.017.
[84] M.Z. Kabir, B. Tavousi Tehrani, Closed-form solution for thermal, mechanical, and thermo-mechanical buckling and post-buckling of SMA composite plates, Compos. Struct. 168 (2017) 535–548. doi:10.1016/j.compstruct.2017.02.046.
[85] R.F. Palardy, A.N. Palazotto, Buckling and vibration of composite plates using the Levy method, Compos. Struct. 14 (1990) 61–86. doi:10.1016/0263-8223(90)90059-N.
[86] A. Nosier, J.N. Reddy, Vibration and stability analysis of cross-ply laminated circular cylindrical shells, J. Sound Vib. 157 (1992) 139–159.
[87] A. Nosier, J.N. Reddy, On vibration and buckling of symmetric laminated plates according to shear deformation theories - Part I, Acta Mech. 94 (1992) 123–144. doi:10.1007/BF01176647.
[88] A. Alesadi, M. Galehdari, S. Shojaee, Free vibration and buckling analysis of cross-ply laminated composite plates using Carrera’s unified formulation based on Isogeometric approach, Comput. Struct. 183 (2017) 38–47. doi:10.1016/j.compstruc.2017.01.013.
[89] D.B. Singh, B.N. Singh, New higher order shear deformation theories for free vibration and buckling analysis of laminated and braided composite plates, Int. J. Mech. Sci. 131–132 (2017) 265–277. doi:10.1016/j.ijmecsci.2017.06.053.
[90] A.S. Sayyad, Y.M. Ghugal, On the Buckling of Isotropic , Transversely Isotropic, 2014. doi:10.1142/S0219455414500205.
[91] T. Özben, Analysis of critical buckling load of laminated composites plate with different boundary conditions using FEM and analytical methods, Comput. Mater. Sci. 45 (2009) 1006–1015. doi:10.1016/j.commatsci.2009.01.003.
[92] G.B. Chai, Buckling of generally laminated composite plates with various edge support conditions Gin, 29 (1994) 299–310.
[93] S.T. Smith, M.A. Bradford, D.J. Oehlers, Numerical convergence of simple and orthogonal polynomials for the unilateral plate buckling problem using the Rayleigh-Ritz method, Int. J. Numer. Methods Eng. 44 (1999) 1685–1707. doi:10.1002/(SICI)1097-0207(19990420)44:11<1685::AID-NME562>3.0.CO;2-9.
[94] M. Aydin Komur, M. Sonmez, Elastic buckling of rectangular plates under linearly varying in-plane normal load with a circular cutout, Mech. Res. Commun. 35 (2008) 361–371. doi:10.1016/j.mechrescom.2008.01.005.
[95] K. Liang, M. Ruess, M. Abdalla, The Koiter-Newton approach using von Ka´rma´n kinematics for buckling analyses of imperfection sensitive structures, Comput. Methods Appl. Mech. Eng. 279 (2014) 440–468. doi:10.1016/j.cma.2014.07.008.
[96] P. Dhurvey, Buckling analysis of composite laminated skew plate of variable thickness, Mater. Today Proc. 4 (2017) 9732–9736. doi:10.1016/j.matpr.2017.06.257.
[97] L.W. Chen, L.Y. Chen, Thermal buckling of laminated composite plates, J. Therm. Stress. 10 (1987) 345–356. doi:10.1080/01495738708927017.
[98] S. Tahaei Yaghoubi, S.M. Mousavi, J. Paavola, Buckling of centrosymmetric anisotropic beam structures within strain gradient elasticity, Int. J. Solids Struct. 109 (2017) 84–92. doi:10.1016/j.ijsolstr.2017.01.009.
[99] I.U. Cagdas, S. Adali, Buckling of cross-ply laminates subject to linearly varying compressive loads and in-plane boundary restraints, J. Thermoplast. Compos. Mater. 26 (2013) 193–215. doi:10.1177/0892705711420594.
[100] S. Ilanko, L.E. Monterrubio, The Rayleigh-Ritz Method for Structural Analysis, 2014.
[101] C.M. Wang, Y.C. Wang, J.N. Reddy, Problems and remedy for the Ritz method in determining stress resultants of corner supported rectangular plates, Comput. Struct. 80 (2002) 145–154. doi:10.1016/S0045-7949(01)00168-7.
[102] C.M. Wang, Y.C. Wang, J.N. Reddy, V. Thevendran, Improved Computation of Stress Resultants in the, Managing. 128 (2002) 249–258. doi:10.1061/(ASCE)0733-9445(2002)128:2(249).
[103] L.M. Kachanov, Separation failure of composite materials, Polym. Mech. 12 (1976) 812–815. doi:10.1007/BF00856347.
[104] H. Chai, Buckling and post-buckling behavior of elliptical plates: Part II-Results, J. Appl. Mech. Trans. ASME. 57 (1990) 981–988. doi:10.1115/1.2897671.
[105] H. Chai, Buckling and post-buckling behavior of elliptical plates: Part I-analysis, J. Appl. Mech. Trans. ASME. 57 (1990) 981–988. doi:10.1115/1.2897671.
[106] B. Storåkers, B. Andersson, Nonlinear plate theory applied to delamination in composites, J. Mech. Phys. Solids. 36 (1988) 689–718. doi:10.1016/0022-5096(88)90004-X.
[107] Y. Wan-Lee, Axisymmetric buckling and growth of a circular delamination in a compressed laminate, Int. J. Solids Struct. 21 (1985) 503–514. doi:10.1016/0020-7683(85)90011-3.
[108] N. Kharghani, C. Guedes Soares, Analytical and experimental study of the ultimate strength of delaminated composite laminates under compressive loading, Compos. Struct. (2019) 111355. doi:10.1016/j.compstruct.2019.111355.
[109] S. Wang, Y. Zhang, S. Wang, Buckling , post-buckling and delamination propagation in debonded composite laminates Part 1 : Theoretical development, Compos. Struct. 88 (2009) 131–146. doi:10.1016/j.compstruct.2008.02.012.
[110] C.M. Wang, Y.C. Wang, J.N. Reddy, V. Thevendran, Improved Computation of Stress Resultants in the p-Ritz Method, J. Struct. Eng. 128 (2002) 249–258. doi:10.1061/(ASCE)0733-9445(2002)128:2(249).
[111] D. Bruno, F. Greco, An asymptotic analysis of delamination buckling and growth in layered plates, Int. J. Solids Struct. 37 (2000) 6239–6276. doi:10.1016/S0020-7683(99)00281-4.
[112] J.D. Whitcomb, K.N. Shivakumar, Strain-Energy Release Rate Analysis of a Laminate with a Postbuckled Delamination, NASA Tech. Memo. 89091 (1987).
[113] H. Gu, A. Chattopadhyay, An experimental investigation of delamination buckling and post buckling of composite laminates, Compos. Sci. Technol. 59 (1999) 903–910.
[114] M.A. Crisfield, A fast incremental/iterative solution procedure that handles “snap-through,” Comput. Struct. 13 (1981) 55–62. doi:10.1016/0045-7949(81)90108-5.
[115] J.N. Reddy, a. Khdeir, Buckling and vibration of laminated composite plates using various plate theories, AIAA J. 27 (1989) 1808–1817. doi:10.2514/3.10338.
[116] N. Grover, D.K. Maiti, B.N. Singh, A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates, Compos. Struct. 95 (2013) 667–675. doi:10.1016/j.compstruct.2012.08.012.
[117] J.L. Mantari, F.G. Canales, Free vibration and buckling of laminated beams via hybrid Ritz solution for various penalized boundary conditions, Compos. Struct. 152 (2016) 306–315. doi:10.1016/j.compstruct.2016.05.037.
[118] A.K. Upadhyay, · K K Shukla, Post-buckling analysis of skew plates subjected to combined in-plane loadings, Acta Mech. 225 (2014) 2959–2968. doi:10.1007/s00707-014-1205-2.
[119] L. Librescu, A.A. Khdeir, D. Frederick, A shear deformable theory of laminated composite shallow shell-type panels and their response analysis I: Free vibration and buckling, Acta Mech. 76 (1989) 1–33. doi:10.1007/BF01175794.
[120] G.J. Simitses, J. Giri, Buckling of Rotationally Restrained Orthotropic Plates Under Uniaxial Compression, Compos. Mater. 11 (1978) 345–364. doi:10.1177/002199837701100308.
[121] E. Jaberzadeh, M. Azhari, Elastic and inelastic local buckling of stiffened plates subjected to non-uniform compression using the Galerkin method, Appl. Math. Model. 33 (2009) 1874–1885. doi:10.1016/j.apm.2008.03.020.
[122] R. Vescovini, C. Bisagni, Single-mode solution for post-buckling analysis of composite panels with elastic restraints loaded in compression, Compos. Part B Eng. 43 (2012) 1258–1274. doi:10.1016/j.compositesb.2011.08.029.
[123] Q. Chen, P. Qiao, Shear buckling of rotationally-restrained composite laminated plates, Thin-Walled Struct. 94 (2015) 147–154. doi:10.1016/j.tws.2015.04.006.
[124] P. Qiao, G. Zou, Local buckling of elastically restrained fiber-reinforced plastic plates and its application to box sections, J. Eng. Mech. 128 (2002) 1324–1330. doi:10.1061/(ASCE)0733-9399(2002)128:12(1324).
[125] P. Qiao, G. Zou, Local Buckling of Composite Fiber-Reinforced Plastic Wide-Flange Sections, J. Struct. Eng. 129 (2003) 125–129. doi:10.1061/(ASCE)0733-9445(2003)129:1(125).
[126] C. Mittelstedt, Stability behaviour of arbitrarily laminated composite plates with free and elastically restrained unloaded edges, Int. J. Mech. Sci. 49 (2007) 819–833. doi:10.1016/j.ijmecsci.2006.11.011.
[127] D.G. Stamatelos, G.N. Labeas, K.I. Tserpes, Analytical calculation of local buckling and post-buckling behavior of isotropic and orthotropic stiffened panels, Thin-Walled Struct. 49 (2011) 422–430. doi:10.1016/j.tws.2010.11.008.
[128] P. Qiao, L. Shan, Explicit local buckling analysis and design of fiber-reinforced plastic composite structural shapes, Compos. Struct. 70 (2005) 468–483. doi:10.1016/j.compstruct.2004.09.005.
[129] L. Shan, P. Qiao, Explicit local buckling analysis of rotationally restrained composite plates under uniaxial compression, Eng. Struct. 30 (2008) 126–140. doi:10.1016/j.engstruct.2007.02.023.
[130] P. Qiao, X. Huo, Explicit local buckling analysis of rotationally-restrained orthotropic plates under uniform shear, Compos. Struct. 93 (2011) 2785–2794. doi:10.1016/j.compstruct.2011.05.026.
[131] E. Villarreal, D. Abajo, Buckling and modal analysis of rotationally restrained orthotropic plates, Prog. Aerosp. Sci. 78 (2015) 116–130. doi:10.1016/j.paerosci.2015.06.005.
[132] L.E. Monterrubio, Frequency and buckling parameters of box-type structures using the Rayleigh-Ritz method and penalty parameters, Comput. Struct. 104–105 (2012) 44–49. doi:10.1016/j.compstruc.2012.03.010.
[133] J.W. Pizhong Qiao, Julio F. Davalos, Local buckling of composite FRP shapes by discrete plate analysis, 127 (2001) 245–255.
[134] L.C. Bank, J. Yin, Buckling of orthotropic plates with free and rotationally restrained unloaded edges, Thin-Walled Struct. 24 (1996) 83–96. doi:10.1016/0263-8231(95)00036-4.
[135] S.M.R. Khalili, P. Abbaspour, K. Malekzadeh Fard, Buckling of non-ideal simply supported laminated plate on Pasternak foundation, Appl. Math. Comput. 219 (2013) 6420–6430. doi:10.1016/J.AMC.2012.12.056.
[136] T. Mizusawa, T. Kajita, Vibration and buckling of rectangular plates with nonuniform elastic constraints in rotation, Int. J. Solids Struct. 23 (1987) 45–55. doi:10.1016/0020-7683(87)90031-X.
[137] Q. Chen, P. Qiao, Buckling analysis of laminated plate structures with elastic edges using a novel semi-analytical finite strip method, Compos. Struct. 152 (2016) 85–95. doi:10.1016/j.compstruct.2016.05.008.
[138] J.M. Housner, M. Stein, Numerical analysis and parametric study of the buckling of composite orthotropic compression and shear panels, NASA TN D-7996. (1975).
[139] A. Shirkavand, F. Taheri-Behrooz, M. Omidi, Orientation and size effect of a rectangle cutout on the buckling of composite cylinders, Aerosp. Sci. Technol. 87 (2019) 488–497. doi:10.1016/J.AST.2019.02.042.
[140] R. ARNOLD, S. YOO, Buckling, postbuckling, and crippling of shallow curved composite plates with edge stiffeners, 26th Struct. Struct. Dyn. Mater. Conf. 23 (1985) 589–598. doi:doi:10.2514/6.1985-769.
[141] N. Jaunky, K. Jr, An assessment of shell theories for buckling of circular cylindrical laminated composite panels loaded in axial compression, Int. J. Solids Struct. 36 (1999) 3799–3820. doi:10.1016/S0020-7683(98)00177-2.
[142] J.M. Whitney, Structural Analysis of Anisotropic Laminated plates, Technomic Publishing Company, Inc., 1987.
[143] R. Ganesan, S. Akhlaque-E-Rasul, Compressive response of tapered composite shells, Compos. Struct. 93 (2011) 2153–2162. doi:10.1016/j.compstruct.2011.02.010.
[144] Elmer Franklin Bruhn, Analysis and Design of Flight Vehicle Structures, Jacobs Publishing, Inc., 1973.
[145] M.P. Nemeth, Nondimensional parameters and equations for nonlinear and bifurcation analyses of thin anisotropic quasi-shallow shells, J. Appl. Mech. 61 (1994) 664–669.
[146] Z. Aslan, M. Şahin, Buckling behavior and compressive failure of composite laminates containing multiple large delaminations, Compos. Struct. 89 (2009) 382–390. doi:10.1016/j.compstruct.2008.08.011.
[147] S. Shoja, V. Berbyuk, A. Boström, Delamination detection in composite laminates using low frequency guided waves: Numerical simulations, Compos. Struct. 203 (2018) 826–834. doi:10.1016/j.compstruct.2018.07.025.
Repository Staff Only: item control page