Login | Register

The Chemical Ecology of Geosmin

Title:

The Chemical Ecology of Geosmin

Zaroubi, Liana (2021) The Chemical Ecology of Geosmin. Masters thesis, Concordia University.

[thumbnail of These are additional files to the thesis including text documents (word doc files), spreadsheets (excel sheets), python scripts and video files (MP4V files).]10MB
[thumbnail of Zaroubi_MSc_S2021.pdf]
Preview
Text (application/pdf)
Zaroubi_MSc_S2021.pdf - Accepted Version
Available under License Spectrum Terms of Access.
7MB

Abstract

Known as the smell of earth after rain, geosmin is an odorous terpene detectable by humans at picomolar concentrations. Geosmin production is heavily conserved in actinobacteria, myxobacteria, cyanobacteria, some fungi and red beets (Beta vulgaris L.), suggesting it strongly contributes to the fitness of these organisms. Prokaryotes produce geosmin through the terpene cyclase “geosmin synthase” converting germacradienol into geosmin via isoprenoid pathways (methylerythritol phosphate, mevalonate or leucine-dependent). However, the universality and ecological role of geosmin is poorly understood. I theorized that geosmin is an aposematic signal used to indicate the unpalatability of toxin-producing microbes, discouraging predation by eukaryotes. Consistent with this hypothesis I have found that geosmin reduces predation of Streptomyces coelicolor and Myxococcus xanthus by the bacteriophagous Caenorhabditis elegans. Predation was restored by the removal of both terpene biosynthetic pathways or deletion of the C. elegans ASE sensory neuron and resulted in the death of the nematodes. Geosmin itself was non-toxic. This is the first warning chemical to be identified in bacteria or fungi, and suggests molecular signalling affects microbial predator-prey interactions in a manner similar to the well-studied visual markers displayed by poisonous animal prey. In line with geosmin being a warning chemical, I also determined from a bioinformatics analysis that geosmin synthase was acquired from a distant past through horizontal gene transfer with Actinobacteria as the ancestral genetic reservoir. In addition, my work also suggests that several genes not directly involved in the biosynthesis of geosmin nevertheless support its activity. The investigation of these genes may enhance our understanding of the biosynthesis and regulation of geosmin and terpenes in prokaryotes.

Divisions:Concordia University > Faculty of Arts and Science > Chemistry and Biochemistry
Item Type:Thesis (Masters)
Authors:Zaroubi, Liana
Institution:Concordia University
Degree Name:M. Sc.
Program:Chemistry
Date:27 January 2021
Thesis Supervisor(s):Findlay, Brandon
Keywords:Chemical ecology, Geosmin, terpene, warning chemical, natural product, secondary metabolite, volatile organic compound, streptomyces, myxobacteria, C. elegans.
ID Code:988023
Deposited By: LIANA ZAROUBI
Deposited On:29 Jun 2021 20:57
Last Modified:10 Feb 2023 01:00

References:

(1) Juttner, F.; Watson, S. B. Biochemical and Ecological Control of Geosmin and 2-Methylisoborneol in Source Waters. Applied and Environmental Microbiology 2007, 73 (14), 4395–4406. https://doi.org/10.1128/AEM.02250-06.
(2) Polizzi, V.; Adams, A.; De Saeger, S.; Van Peteghem, C.; Moretti, A.; De Kimpe, N. Influence of Various Growth Parameters on Fungal Growth and Volatile Metabolite Production by Indoor Molds. Science of The Total Environment 2012, 414, 277–286. https://doi.org/10.1016/j.scitotenv.2011.10.035.
(3) Maher, L.; Goldman, I. L. Endogenous Production of Geosmin in Table Beet. HortScience 2018, 53 (1), 67–72. https://doi.org/10.21273/HORTSCI12488-17.
(4) Fink, P. Ecological Functions of Volatile Organic Compounds in Aquatic Systems. Marine and Freshwater Behaviour and Physiology 2007, 40 (3), 155–168. https://doi.org/10.1080/10236240701602218.
(5) Yean-Woong You. Sensitive Detection of 2-MIB and Geosmin in Drinking Water http://hpst.cz/sites/default/files/attachments/5991-1031en-sensitive-detection-2-mib-and-geosmin-drinking-water.pdf (accessed Apr 1, 2020).
(6) Berthelot, M.; André, G. Sur l’odeur Propre de La Terre. Compt. Rend. 1891, 112, 598–599.
(7) Gerber, N. N.; Lechevalier, H. A. Geosmin, an Earthy-Smelling Substance Isolated from Actinomycetes. Appl. Microbiol. 1965, 13 (6), 935–938.
(8) National Center for Biotechnology Information. Geosmin, CID=29746. https://pubchem.ncbi.nlm.nih.gov/compound/Geosmin (accessed Apr 1, 2020).
(9) National Center for Biotechnology Information. Water, CID=962. https://pubchem.ncbi.nlm.nih.gov/compound/Water (accessed Apr 1, 2020).
(10) Miziorko, H. M. Enzymes of the Mevalonate Pathway of Isoprenoid Biosynthesis. Archives of Biochemistry and Biophysics 2011, 505 (2), 131–143. https://doi.org/10.1016/j.abb.2010.09.028.
(11) Dickschat, J. S.; Bode, H. B.; Mahmud, T.; Müller, R.; Schulz, S. A Novel Type of Geosmin Biosynthesis in Myxobacteria. J. Org. Chem. 2005, 70 (13), 5174–5182. https://doi.org/10.1021/jo050449g.
(12) Rohmer, M.; Rohmer, M. The Discovery of a Mevalonate-Independent Pathway for Isoprenoid Biosynthesis in Bacteria, Algae and Higher Plants†. Nat. Prod. Rep. 1999, 16 (5), 565–574. https://doi.org/10.1039/a709175c.
(13) Burke, C. C.; Wildung, M. R.; Croteau, R. Geranyl Diphosphate Synthase: Cloning, Expression, and Characterization of This Prenyltransferase as a Heterodimer. Proceedings of the National Academy of Sciences 1999, 96 (23), 13062–13067. https://doi.org/10.1073/pnas.96.23.13062.
(14) Thulasiram, H. V.; Poulter, C. D. Farnesyl Diphosphate Synthase: The Art of Compromise between Substrate Selectivity and Stereoselectivity. J. Am. Chem. Soc. 2006, 128 (49), 15819–15823. https://doi.org/10.1021/ja065573b.
(15) Jiang, J.; He, X.; Cane, D. E. Biosynthesis of the Earthy Odorant Geosmin by a Bifunctional Streptomyces Coelicolor Enzyme. Nat Chem Biol 2007, 3 (11), 711–715. https://doi.org/10.1038/nchembio.2007.29.
(16) Martín-Sánchez, L.; Singh, K. S.; Avalos, M.; van Wezel, G. P.; Dickschat, J. S.; Garbeva, P. Phylogenomic Analyses and Distribution of Terpene Synthases among Streptomyces. Beilstein J. Org. Chem. 2019, 15, 1181–1193. https://doi.org/10.3762/bjoc.15.115.
(17) Becher, P. G.; Verschut, V.; Bibb, M. J.; Bush, M. J.; Molnár, B. P.; Barane, E.; Al-Bassam, M. M.; Chandra, G.; Song, L.; Challis, G. L.; Buttner, M. J.; Flärdh, K. Developmentally Regulated Volatiles Geosmin and 2-Methylisoborneol Attract a Soil Arthropod to Streptomyces Bacteria Promoting Spore Dispersal. Nat Microbiol 2020. https://doi.org/10.1038/s41564-020-0697-x.
(18) Perlova, O.; Gerth, K.; Kuhlmann, S.; Zhang, Y.; Müller, R. Novel Expression Hosts for Complex Secondary Metabolite Megasynthetases: Production of Myxochromide in the Thermopilic Isolate Corallococcus Macrosporus GT-2. Microb Cell Fact 2009, 8 (1), 1. https://doi.org/10.1186/1475-2859-8-1.
(19) Reyes-Lamothe, R.; Sherratt, D. J. The Bacterial Cell Cycle, Chromosome Inheritance and Cell Growth. Nat Rev Microbiol 2019, 17 (8), 467–478. https://doi.org/10.1038/s41579-019-0212-7.
(20) Wang, Z.; Song, G.; Li, Y.; Yu, G.; Hou, X.; Gan, Z.; Li, R. The Diversity, Origin, and Evolutionary Analysis of Geosmin Synthase Gene in Cyanobacteria. Science of The Total Environment 2019, 689, 789–796. https://doi.org/10.1016/j.scitotenv.2019.06.468.
(21) Dionigi, C. P.; Lawlor, T. E.; McFarland, J. E.; Johnsen, P. B. Evaluation of Geosmin and 2-Methylisoborneol on the Histidine Dependence of TA98 and TA100 Salmonella Typhimurium Tester Strains. Water Research 1993, 27 (11), 1615–1618. https://doi.org/10.1016/0043-1354(93)90125-2.
(22) Utkilen, H. C.; Frøshaug, M. Geosmin Production and Excretion in a Planktonic and Benthic Oscillatoria. Water Science and Technology 1992, 25 (2), 199–206. https://doi.org/10.2166/wst.1992.0053.
(23) Stensmyr, M. C.; Dweck, H. K. M.; Farhan, A.; Ibba, I.; Strutz, A.; Mukunda, L.; Linz, J.; Grabe, V.; Steck, K.; Lavista-Llanos, S.; Wicher, D.; Sachse, S.; Knaden, M.; Becher, P. G.; Seki, Y.; Hansson, B. S. A Conserved Dedicated Olfactory Circuit for Detecting Harmful Microbes in Drosophila. Cell 2012, 151 (6), 1345–1357. https://doi.org/10.1016/j.cell.2012.09.046.
(24) Melo, N.; Wolff, G. H.; Costa-da-Silva, A. L.; Arribas, R.; Triana, M. F.; Gugger, M.; Riffell, J. A.; DeGennaro, M.; Stensmyr, M. C. Geosmin Attracts Aedes Aegypti Mosquitoes to Oviposition Sites. Current Biology 2020, 30 (1), 127-134.e5. https://doi.org/10.1016/j.cub.2019.11.002.
(25) Huang, H.; Ren, L.; Li, H.; Schmidt, A.; Gershenzon, J.; Lu, Y.; Cheng, D. The Nesting Preference of an Invasive Ant Is Associated with the Cues Produced by Actinobacteria in Soil. PLoS Pathog 2020, 16 (9), e1008800. https://doi.org/10.1371/journal.ppat.1008800.
(26) Tosi, L.; Sola, C. Role of Geosmin, a Typical Inland Water Odour, in Guiding Glass Eel Anguilla Anguilla (L.) Migration. Ethology 2010, 95 (3), 177–185. https://doi.org/10.1111/j.1439-0310.1993.tb00468.x.
(27) Wales, A. D.; Davies, R. H. A Critical Review of Salmonella Typhimurium Infection in Laying Hens. Avian Pathology 2011, 40 (5), 429–436. https://doi.org/10.1080/03079457.2011.606799.
(28) Churro, C.; Semedo-Aguiar, A. P.; Silva, A. D.; Pereira-Leal, J. B.; Leite, R. B. A Novel Cyanobacterial Geosmin Producer, Revising GeoA Distribution and Dispersion Patterns in Bacteria. Sci Rep 2020, 10 (1), 8679. https://doi.org/10.1038/s41598-020-64774-y.
(29) Pattanaik, B.; Lindberg, P. Terpenoids and Their Biosynthesis in Cyanobacteria. Life 2015, 5 (1), 269–293. https://doi.org/10.3390/life5010269.
(30) Seto, H.; Hiroyuki, W.; Furihata, K. Simultaneous Operation of the Mevalonate and Non-Mevalonate Pathways in the Biosynthesis of Isopentenyl Diphosphate in Streptomyces Aeriouvifer. Terrahedron Lerrers 1996, 37 (44), 7979–7982.
(31) Neff, E. P. Stop and Smell the Geosmin. Lab Anim 2018, 47 (10), 270–270. https://doi.org/10.1038/s41684-018-0161-1.
(32) Du, H.; Lu, H.; Xu, Y. Influence of Geosmin-Producing Streptomyces on the Growth and Volatile Metabolites of Yeasts during Chinese Liquor Fermentation. J. Agric. Food Chem. 2015, 63 (1), 290–296. https://doi.org/10.1021/jf503351w.
(33) Rosen, B. H.; MacLeod, B. W.; Simpson, M. R. ACCUMULATION AND RELEASE OF GEOSMIN DURING THE GROWTH PHASES OF ANABAENA CIRCINALIS (KUTZ.) RABENHORST. Wal. Sci. Tech. 1992, 25 (2), 185–190.
(34) La Guerche, S.; Chamont, S.; Blancard, D.; Dubourdieu, D.; Darriet, P. Origin of (−)-Geosmin on Grapes: On the Complementary Action of Two Fungi, Botrytis Cinerea and Penicillium Expansum. Antonie Van Leeuwenhoek 2005, 88 (2), 131–139. https://doi.org/10.1007/s10482-005-3872-4.
(35) Urem, M.; van Rossum, T.; Bucca, G.; Moolenaar, G. F.; Laing, E.; Świątek-Połatyńska, M. A.; Willemse, J.; Tenconi, E.; Rigali, S.; Goosen, N.; Smith, C. P.; van Wezel, G. P. OsdR of Streptomyces Coelicolor and the Dormancy Regulator DevR of Mycobacterium Tuberculosis Control Overlapping Regulons. mSystems 2016, 1 (3), e00014-16, /msys/1/3/e00014-16.atom. https://doi.org/10.1128/mSystems.00014-16.
(36) Li, Z.; Hobson, P.; An, W.; Burch, M. D.; House, J.; Yang, M. Earthy Odor Compounds Production and Loss in Three Cyanobacterial Cultures. Water Research 2012, 46 (16), 5165–5173. https://doi.org/10.1016/j.watres.2012.06.008.
(37) Schrader, K. K.; Blevins, W. T. Geosmin-Producing Species of Streptomyces and Lyngbya from Aquaculture Ponds. Can. J. Microbiol. 1993, 39, 834–840.
(38) Muñoz-Dorado, J.; Marcos-Torres, F. J.; García-Bravo, E.; Moraleda-Muñoz, A.; Pérez, J. Myxobacteria: Moving, Killing, Feeding, and Surviving Together. Front. Microbiol. 2016, 7. https://doi.org/10.3389/fmicb.2016.00781.
(39) Diez, J.; Martinez, J. P.; Mestres, J.; Sasse, F.; Frank, R.; Meyerhans, A. Myxobacteria: Natural Pharmaceutical Factories. Microb Cell Fact 2012, 11 (1), 52. https://doi.org/10.1186/1475-2859-11-52.
(40) Xiao, Y.; Wei, X.; Ebright, R.; Wall, D. Antibiotic Production by Myxobacteria Plays a Role in Predation. Journal of Bacteriology 2011, 193 (18), 4626–4633. https://doi.org/10.1128/JB.05052-11.
(41) Hense, I.; Beckmann, A. The Representation of Cyanobacteria Life Cycle Processes in Aquatic Ecosystem Models. Ecological Modelling 2010, 221 (19), 2330–2338. https://doi.org/10.1016/j.ecolmodel.2010.06.014.
(42) Manaaki Whenua. Fungal life cycles - spores and more. https://www.sciencelearn.org.nz/images/3689-mushroom-life-cycle (accessed Apr 2, 2020).
(43) Breheret, S.; Talou, T.; Rapior, S.; Bessière, J.-M. Geosmin, a Sesquiterpenoid Compound Responsible for the Musty-Earthy Odor of Cortinarius Herculeus, Cystoderma Amianthinum , and Cy. Carcharias. Mycologia 1999, 91 (1), 117–120. https://doi.org/10.1080/00275514.1999.12060999.
(44) Mattheis, J. P.; Roberts, R. G. Identification of Geosmin as a Volatile Metabolite of Penicillium Expansum. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 1992, 58 (9), 3170–3172.
(45) Chater, K. F. Recent Advances in Understanding Streptomyces. F1000Res 2016, 5, 2795. https://doi.org/10.12688/f1000research.9534.1.
(46) Ingham, E. R. The Soil Food Web https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/health/biology/?cid=nrcs142p2_053868 (accessed Apr 9, 2020).
(47) Seipke, R. F.; Kaltenpoth, M.; Hutchings, M. I. Streptomyces as Symbionts: An Emerging and Widespread Theme? FEMS Microbiol Rev 2012, 36 (4), 862–876. https://doi.org/10.1111/j.1574-6976.2011.00313.x.
(48) Hayes, S. J.; Hayes, K. P.; Robinson, B. S. Geosmin as an Odorous Metabolite in Cultures of a Free-Living Amoeba, Vannella Species (Gymnamoebia, Vannellidae). J. Profozool. 1991, 38 (1), 44–47.
(49) Bruger, E.; Waters, C. Sharing the Sandbox: Evolutionary Mechanisms That Maintain Bacterial Cooperation. F1000Res 2015, 4, 1504. https://doi.org/10.12688/f1000research.7363.1.
(50) Lowery, C. A.; Dickerson, T. J.; Janda, K. D. Interspecies and Interkingdom Communication Mediated by Bacterial Quorum Sensing. Chem. Soc. Rev. 2008, 37 (7), 1337. https://doi.org/10.1039/b702781h.
(51) Ahmad, A.; Viljoen, A. M.; Chenia, H. Y. The Impact of Plant Volatiles on Bacterial Quorum Sensing. Lett Appl Microbiol 2015, 60 (1), 8–19. https://doi.org/10.1111/lam.12343.
(52) Husain, F. M.; Ahmad, I.; Al-thubiani, A. S.; Abulreesh, H. H.; AlHazza, I. M.; Aqil, F. Leaf Extracts of Mangifera Indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria. Front. Microbiol. 2017, 8, 727. https://doi.org/10.3389/fmicb.2017.00727.
(53) Dunn, P. H.; Barro, S. C.; Poth, M. Soil Moisture Affects Survival of Microorganisms in Heated Chaparral Soil. Soil Biology and Biochemistry 1985, 17 (2), 143–148. https://doi.org/10.1016/0038-0717(85)90105-1.
(54) Kmiha, S.; Aouadhi, C.; Klibi, A.; Jouini, A.; Béjaoui, A.; Mejri, S.; Maaroufi, A. Seasonal and Regional Occurrence of Heat-Resistant Spore-Forming Bacteria in the Course of Ultra-High Temperature Milk Production in Tunisia. Journal of Dairy Science 2017, 100 (8), 6090–6099. https://doi.org/10.3168/jds.2016-11616.
(55) Rittershaus, E. S. C.; Baek, S.-H.; Sassetti, C. M. The Normalcy of Dormancy: Common Themes in Microbial Quiescence. Cell Host & Microbe 2013, 13 (6), 643–651. https://doi.org/10.1016/j.chom.2013.05.012.
(56) Dworkin, J.; Shah, I. M. Exit from Dormancy in Microbial Organisms. Nat Rev Microbiol 2010, 8 (12), 890–896. https://doi.org/10.1038/nrmicro2453.
(57) Shah, I. M.; Laaberki, M.-H.; Popham, D. L.; Dworkin, J. A Eukaryotic-like Ser/Thr Kinase Signals Bacteria to Exit Dormancy in Response to Peptidoglycan Fragments. Cell 2008, 135 (3), 486–496. https://doi.org/10.1016/j.cell.2008.08.039.
(58) van den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D. A.; de Goede, R. G. M.; Adams, B. J.; Ahmad, W.; Andriuzzi, W. S.; Bardgett, R. D.; Bonkowski, M.; Campos-Herrera, R.; Cares, J. E.; Caruso, T.; de Brito Caixeta, L.; Chen, X.; Costa, S. R.; Creamer, R.; Mauro da Cunha Castro, J.; Dam, M.; Djigal, D.; Escuer, M.; Griffiths, B. S.; Gutiérrez, C.; Hohberg, K.; Kalinkina, D.; Kardol, P.; Kergunteuil, A.; Korthals, G.; Krashevska, V.; Kudrin, A. A.; Li, Q.; Liang, W.; Magilton, M.; Marais, M.; Martín, J. A. R.; Matveeva, E.; Mayad, E. H.; Mulder, C.; Mullin, P.; Neilson, R.; Nguyen, T. A. D.; Nielsen, U. N.; Okada, H.; Rius, J. E. P.; Pan, K.; Peneva, V.; Pellissier, L.; Carlos Pereira da Silva, J.; Pitteloud, C.; Powers, T. O.; Powers, K.; Quist, C. W.; Rasmann, S.; Moreno, S. S.; Scheu, S.; Setälä, H.; Sushchuk, A.; Tiunov, A. V.; Trap, J.; van der Putten, W.; Vestergård, M.; Villenave, C.; Waeyenberge, L.; Wall, D. H.; Wilschut, R.; Wright, D. G.; Yang, J.; Crowther, T. W. Soil Nematode Abundance and Functional Group Composition at a Global Scale. Nature 2019, 572 (7768), 194–198. https://doi.org/10.1038/s41586-019-1418-6.
(59) Anacarso, I.; Bondi, M.; Condo, C. Amoebicidal Effects of Three Bacteriocin like Substances from Lactic Acid Bacteria against Acanthamoeba Polyphaga. J Bacteriol Parasitol 2015, 6 (s1). https://doi.org/10.4172/2155-9597.1000201.
(60) Alegado, R. A.; Campbell, M. C.; Chen, W. C.; Slutz, S. S.; Tan, M.-W. Characterization of Mediators of Microbial Virulence and Innate Immunity Using the Caenorhabditis Elegans Host-Pathogen Model. Cell Microbiol 2003, 5 (7), 435–444. https://doi.org/10.1046/j.1462-5822.2003.00287.x.
(61) Sifri, C. D.; Begun, J.; Ausubel, F. M. The Worm Has Turned – Microbial Virulence Modeled in Caenorhabditis Elegans. Trends in Microbiology 2005, 13 (3), 119–127. https://doi.org/10.1016/j.tim.2005.01.003.
(62) Watkins, A. L.; Ray, A.; R. Roberts, L.; Caldwell, K. A.; Olson, J. B. The Prevalence and Distribution of Neurodegenerative Compound-Producing Soil Streptomyces Spp. Sci Rep 2016, 6 (1), 22566. https://doi.org/10.1038/srep22566.
(63) Clarholm, M. Protozoan Grazing of Bacteria in Soil--Lmpact and Importance. 8.
(64) The Editors of Encyclopaedia Britannica. Phagocytosis https://www.britannica.com/science/phagocytosis (accessed Apr 9, 2020).
(65) Schulz-Bohm, K.; Geisen, S.; Wubs, E. R. J.; Song, C.; de Boer, W.; Garbeva, P. The Prey’s Scent – Volatile Organic Compound Mediated Interactions between Soil Bacteria and Their Protist Predators. ISME J 2017, 11 (3), 817–820. https://doi.org/10.1038/ismej.2016.144.
(66) Hart, A. C.; Chao, M. Y. From Odors to Behaviors in Caenorhabditis Elegans. In The Neurobiology of Olfaction; Menini, A., Ed.; Frontiers in Neuroscience; CRC Press/Taylor & Francis: Boca Raton (FL), 2010.
(67) Tran, A.; Tang, A.; O’Loughlin, C. T.; Balistreri, A.; Chang, E.; Coto Villa, D.; Li, J.; Varshney, A.; Jimenez, V.; Pyle, J.; Tsujimoto, B.; Wellbrook, C.; Vargas, C.; Duong, A.; Ali, N.; Matthews, S. Y.; Levinson, S.; Woldemariam, S.; Khuri, S.; Bremer, M.; Eggers, D. K.; L’Etoile, N.; Miller Conrad, L. C.; VanHoven, M. K. C. Elegans Avoids Toxin-Producing Streptomyces Using a Seven Transmembrane Domain Chemosensory Receptor. eLife 2017, 6, e23770. https://doi.org/10.7554/eLife.23770.
(68) Cabreiro, F.; Gems, D. Worms Need Microbes Too: Microbiota, Health and Aging in Caenorhabditis Elegans. EMBO Mol Med 2013, 5 (9), 1300–1310. https://doi.org/10.1002/emmm.201100972.
(69) Wang, Z.; Shao, J.; Xu, Y.; Yan, B.; Li, R. Genetic Basis for Geosmin Production by the Water Bloom-Forming Cyanobacterium, Anabaena Ucrainica. Water 2014, 7 (12), 175–187. https://doi.org/10.3390/w7010175.
(70) Whitbourne, K. What Causes Petrichor, the Earthy Smell After Rain? https://science.howstuffworks.com/nature/climate-weather/atmospheric/question479.htm.
(71) Kim, T. K. T Test as a Parametric Statistic. Korean J Anesthesiol 2015, 68 (6), 540. https://doi.org/10.4097/kjae.2015.68.6.540.
(72) Silhavy, T. J.; Kahne, D.; Walker, S. The Bacterial Cell Envelope. Cold Spring Harbor Perspectives in Biology 2010, 2 (5), a000414–a000414. https://doi.org/10.1101/cshperspect.a000414.
(73) Moriyama, Y.; Watanabe, E.; Kobayashi, K.; Harano, H.; Inui, E.; Takeda, K. Secondary Structural Change of Bovine Serum Albumin in Thermal Denaturation up to 130 °C and Protective Effect of Sodium Dodecyl Sulfate on the Change. J. Phys. Chem. B 2008, 112 (51), 16585–16589. https://doi.org/10.1021/jp8067624.
(74) Runnels, L. W.; Scarlata, S. F. Theory and Application of Fluorescence Homotransfer to Melittin Oligomerization. Biophysical Journal 1995, 69 (4), 1569–1583. https://doi.org/10.1016/S0006-3495(95)80030-5.
(75) Twining, S. S. Fluorescein Isothiocyanate-Labeled Casein Assay for Proteolytic Enzymes. Analytical Biochemistry 1984, 143 (1), 30–34. https://doi.org/10.1016/0003-2697(84)90553-0.
(76) Pierce Biotechnology. Pierce Fluorescent Protease Assay Kit. Thermo Fisher Scientific Inc. 2014.
(77) Margie, O.; Palmer, C.; Chin-Sang, I. C. Elegans Chemotaxis Assay. JoVE 2013, No. 74, 50069. https://doi.org/10.3791/50069.
(78) Bargmann, C. I.; Hartwieg, E.; Horvitz, H. R. Odorant-Selective Genes and Neurons Mediate Olfaction in C. Elegans. Cell 1993, 74 (3), 515–527. https://doi.org/10.1016/0092-8674(93)80053-H.
(79) Lans, H.; Rademakers, S.; Jansen, G. A Network of Stimulatory and Inhibitory Gα-Subunits Regulates Olfaction in Caenorhabditis Elegans. Genetics 2004, 167 (4), 1677–1687. https://doi.org/10.1534/genetics.103.024786.
(80) Milward, K.; Busch, K. E.; Murphy, R. J.; Bono, M. de; Olofsson, B. Neuronal and Molecular Substrates for Optimal Foraging in Caenorhabditis Elegans. PNAS 2011, 108 (51), 20672–20677. https://doi.org/10.1073/pnas.1106134109.
(81) Appleby, P. A. A Model of Chemotaxis and Associative Learning in C. Elegans. Biol Cybern 2012, 106 (6), 373–387. https://doi.org/10.1007/s00422-012-0504-8.
(82) Jiang, J.; He, X.; Cane, D. E. Biosynthesis of the Earthy Odorant Geosmin by a Bifunctional Streptomyces Coelicolor Enzyme. Nature Chemical Biology 2007, 3 (11), 711–715. https://doi.org/10.1038/nchembio.2007.29.
(83) Becher, P. G.; Verschut, V.; Bibb, M. J.; Bush, M. J.; Molnár, B. P.; Barane, E.; Al-Bassam, M. M.; Chandra, G.; Song, L.; Challis, G. L.; Buttner, M. J.; Flärdh, K. Developmentally Regulated Volatiles Geosmin and 2-Methylisoborneol Attract a Soil Arthropod to Streptomyces Bacteria Promoting Spore Dispersal. Nature Microbiology 2020, 5 (6), 821–829. https://doi.org/10.1038/s41564-020-0697-x.
(84) Mak, S.; Nodwell, J. R. Actinorhodin Is a Redox-Active Antibiotic with a Complex Mode of Action against Gram-Positive Cells. Molecular Microbiology 2017, 106 (4), 597–613. https://doi.org/10.1111/mmi.13837.
(85) Jüttner, F.; Watson, S. B. Biochemical and Ecological Control of Geosmin and 2-Methylisoborneol in Source Waters. Appl. Environ. Microbiol. 2007, 73 (14), 4395–4406. https://doi.org/10.1128/AEM.02250-06.
(86) Martín-Sánchez, L.; Singh, K. S.; Avalos, M.; van Wezel, G. P.; Dickschat, J. S.; Garbeva, P. Phylogenomic Analyses and Distribution of Terpene Synthases among Streptomyces. Beilstein Journal of Organic Chemistry 2019, 15, 1181–1193. https://doi.org/10.3762/bjoc.15.115.
(87) Churro, C.; Semedo-Aguiar, A. P.; Silva, A. D.; Pereira-Leal, J. B.; Leite, R. B. A Novel Cyanobacterial Geosmin Producer, Revising GeoA Distribution and Dispersion Patterns in Bacteria. Scientific Reports 2020, 10 (1). https://doi.org/10.1038/s41598-020-64774-y.
(88) Saporito, R. A.; Zuercher, R.; Roberts, M.; Gerow, K. G.; Donnelly, M. A. Experimental Evidence for Aposematism in the Dendrobatid Poison Frog Oophaga Pumilio. Copeia 2007, 2007 (4), 1006–1011. https://doi.org/10.1643/0045-8511(2007)7[1006:EEFAIT]2.0.CO;2.
(89) Alatalo, R. V.; Mappes, J. Tracking the Evolution of Warning Signals. Nature 1996, 382 (6593), 708–710.
(90) Exnerová, A.; Štys, P.; Fučíková, E.; Veselá, S.; Svádová, K.; Prokopová, M.; Jarošík, V.; Fuchs, R.; Landová, E. Avoidance of Aposematic Prey in European Tits (Paridae): Learned or Innate? Behavioral Ecology 2007, 18 (1), 148–156. https://doi.org/10.1093/beheco/arl061.
(91) Jones, R. S.; Fenton, A.; Speed, M. P. “Parasite-Induced Aposematism” Protects Entomopathogenic Nematode Parasites against Invertebrate Enemies. Behav Ecol 2016, 27 (2), 645–651. https://doi.org/10.1093/beheco/arv202.
(92) Seto, H.; Watanabe, H.; Furihata, K. Simultaneous Operation of the Mevalonate and Non-Mevalonate Pathways in the Biosynthesis of Isopentenly Diphosphate in Streptomyces Aeriouvifer. Tetrahedron letters 1996, 37 (44), 7979–7982.
(93) Dairi, T. Studies on Biosynthetic Genes and Enzymes of Isoprenoids Produced by Actinomycetes. The Journal of Antibiotics 2005, 58 (4), 227–243. https://doi.org/10.1038/ja.2005.27.
(94) Alghanmi, H. A.; Alkam, F. M.; AL-Taee, M. M. Effect of Light and Temperature on New Cyanobacteria Producers for Geosmin and 2-Methylisoborneol. Journal of Applied Phycology 2018, 30 (1), 319–328. https://doi.org/10.1007/s10811-017-1233-0.
(95) Pérez, J.; Muñoz-Dorado, J.; Braña, A. F.; Shimkets, L. J.; Sevillano, L.; Santamaría, R. I. Myxococcus Xanthus Induces Actinorhodin Overproduction and Aerial Mycelium Formation by Streptomyces Coelicolor. Microbial Biotechnology 2011, 4 (2), 175–183. https://doi.org/10.1111/j.1751-7915.2010.00208.x.
(96) Stensmyr, M. C.; Dweck, H. K. M.; Farhan, A.; Ibba, I.; Strutz, A.; Mukunda, L.; Linz, J.; Grabe, V.; Steck, K.; Lavista-Llanos, S.; Wicher, D.; Sachse, S.; Knaden, M.; Becher, P. G.; Seki, Y.; Hansson, B. S. A Conserved Dedicated Olfactory Circuit for Detecting Harmful Microbes in Drosophila. Cell 2012, 151 (6), 1345–1357. https://doi.org/10.1016/j.cell.2012.09.046.
(97) Melo, N.; Wolff, G. H.; Costa-da-Silva, A. L.; Arribas, R.; Triana, M. F.; Gugger, M.; Riffell, J. A.; DeGennaro, M.; Stensmyr, M. C. Geosmin Attracts Aedes Aegypti Mosquitoes to Oviposition Sites. Current Biology 2020, 30 (1), 127-134.e5. https://doi.org/10.1016/j.cub.2019.11.002.
(98) Huang, H.; Ren, L.; Li, H.; Schmidt, A.; Gershenzon, J.; Lu, Y.; Cheng, D. The Nesting Preference of an Invasive Ant Is Associated with the Cues Produced by Actinobacteria in Soil. PLOS Pathogens 2020, 16 (9), e1008800. https://doi.org/10.1371/journal.ppat.1008800.
(99) Vazquez-Martinez, M. G.; Rodríguez, M. H.; Arredondo-Jiménez, J. I.; Méndez-Sánchez, J. D.; Bond-Compeán, J. G.; Gold-Morgan, M. Cyanobacteria Associated with Anopheles Albimanus (Diptera: Culicidae) Larval Habitats in Southern Mexico. Journal of medical entomology 2002, 39 (6), 825–832.
(100) Sherratt, T. N. The Evolution of Müllerian Mimicry. Naturwissenschaften 2008, 95 (8), 681–695. https://doi.org/10.1007/s00114-008-0403-y.
(101) McDaniel, L. D.; Young, E.; Delaney, J.; Ruhnau, F.; Ritchie, K. B.; Paul, J. H. High Frequency of Horizontal Gene Transfer in the Oceans. Science 2010, 330 (6000), 50. https://doi.org/10.1126/science.1192243.
(102) Vos, M.; Hesselman, M. C.; Beek, T. A. te; Passel, M. W. J. van; Eyre-Walker, A. Rates of Lateral Gene Transfer in Prokaryotes: High but Why? Trends in Microbiology 2015, 23 (10), 598–605. https://doi.org/10.1016/j.tim.2015.07.006.
(103) Chouteau, M.; Arias, M.; Joron, M. Warning Signals Are under Positive Frequency-Dependent Selection in Nature. Proceedings of the National Academy of Sciences 2016, 113 (8), 2164–2169. https://doi.org/10.1073/pnas.1519216113.
(104) Tran, A.; Tang, A.; O’Loughlin, C. T.; Balistreri, A.; Chang, E.; Coto Villa, D.; Li, J.; Varshney, A.; Jimenez, V.; Pyle, J.; Tsujimoto, B.; Wellbrook, C.; Vargas, C.; Duong, A.; Ali, N.; Matthews, S. Y.; Levinson, S.; Woldemariam, S.; Khuri, S.; Bremer, M.; Eggers, D. K.; L’Etoile, N.; Miller Conrad, L. C.; VanHoven, M. K. C. Elegans Avoids Toxin-Producing Streptomyces Using a Seven Transmembrane Domain Chemosensory Receptor. eLife 2017, 6, e23770. https://doi.org/10.7554/eLife.23770.
(105) Jousset, A.; Rochat, L.; Péchy-Tarr, M.; Keel, C.; Scheu, S.; Bonkowski, M. Predators Promote Defence of Rhizosphere Bacterial Populations by Selective Feeding on Non-Toxic Cheaters. The ISME Journal 2009, 3 (6), 666–674. https://doi.org/10.1038/ismej.2009.26.
(106) Servedio, M. R. The Effects of Predator Learning, Forgetting, and Recognition Errors on the Evolution of Warning Coloration. Evolution 2000, 54 (3), 751–763. https://doi.org/10.1111/j.0014-3820.2000.tb00077.x.
(107) De la Fuente, I. M.; Bringas, C.; Malaina, I.; Fedetz, M.; Carrasco-Pujante, J.; Morales, M.; Knafo, S.; Martínez, L.; Pérez-Samartín, A.; López, J. I.; Pérez-Yarza, G.; Boyano, M. D. Evidence of Conditioned Behavior in Amoebae. Nature Communications 2019, 10 (1), 1–12. https://doi.org/10.1038/s41467-019-11677-w.
(108) Ardiel, E. L.; Rankin, C. H. An Elegant Mind: Learning and Memory in Caenorhabditis Elegans. Learn. Mem. 2010, 17 (4), 191–201. https://doi.org/10.1101/lm.960510.
(109) Musselman, H. N.; Neal-Beliveau, B.; Nass, R.; Engleman, E. A. Chemosensory Cue Conditioning with Stimulants in a Caenorhabditis Elegans Animal Model of Addiction. Behavioral Neuroscience 2012, 126 (3), 445–456. https://doi.org/10.1037/a0028303.
(110) Nishijima, S.; Maruyama, I. N. Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis Elegans. Front. Behav. Neurosci. 2017, 11. https://doi.org/10.3389/fnbeh.2017.00080.
(111) Philippe, H.; Douady, C. J. Horizontal Gene Transfer and Phylogenetics. Current Opinion in Microbiology 2003, 6 (5), 498–505. https://doi.org/10.1016/j.mib.2003.09.008.
(112) Lu, G.; Edwards, C. G.; Fellman, J. K.; Mattinson, D. S.; Navazio, J. Biosynthetic Origin of Geosmin in Red Beets ( Beta Vulgaris L.). J. Agric. Food Chem. 2003, 51 (4), 1026–1029. https://doi.org/10.1021/jf020905r.
(113) Bucarey, S. A.; Penn, K.; Paul, L.; Fenical, W.; Jensen, P. R. Genetic Complementation of the Obligate Marine Actinobacterium Salinispora Tropica with the Large Mechanosensitive Channel Gene MscL Rescues Cells from Osmotic Downshock. Appl. Environ. Microbiol. 2012, 78 (12), 4175–4182. https://doi.org/10.1128/AEM.00577-12.
(114) Jensen, P. R.; Williams, P. G.; Oh, D.-C.; Zeigler, L.; Fenical, W. Species-Specific Secondary Metabolite Production in Marine Actinomycetes of the Genus Salinispora. Appl. Environ. Microbiol. 2007, 73 (4), 1146–1152. https://doi.org/10.1128/AEM.01891-06.
(115) Ziemert, N.; Lechner, A.; Wietz, M.; Millan-Aguinaga, N.; Chavarria, K. L.; Jensen, P. R. Diversity and Evolution of Secondary Metabolism in the Marine Actinomycete Genus Salinispora. Proceedings of the National Academy of Sciences 2014, 111 (12), E1130–E1139. https://doi.org/10.1073/pnas.1324161111.
(116) Manivasagan, P.; Kang, K.-H.; Sivakumar, K.; Li-Chan, E. C. Y.; Oh, H.-M.; Kim, S.-K. Marine Actinobacteria: An Important Source of Bioactive Natural Products. Environmental Toxicology and Pharmacology 2014, 38 (1), 172–188. https://doi.org/10.1016/j.etap.2014.05.014.
(117) Dufresne, A.; Ostrowski, M.; Scanlan, D. J.; Garczarek, L.; Mazard, S.; Palenik, B. P.; Paulsen, I. T.; Tandeau de Marsac, N.; Wincker, P.; Dossat, C.; Ferriera, S.; Johnson, J.; Post, A. F.; Hess, W. R.; Partensky, F. Unravelling the Genomic Mosaic of a Ubiquitous Genus of Marine Cyanobacteria. Genome Biol 2008, 9 (5), R90. https://doi.org/10.1186/gb-2008-9-5-r90.
(118) Amiri Moghaddam, J.; Poehlein, A.; Fisch, K.; Alanjary, M.; Daniel, R.; König, G. M.; Schäberle, T. F. Draft Genome Sequences of the Obligatory Marine Myxobacterial Strains Enhygromyxa Salina SWB005 and SWB007. Genome Announc 2018, 6 (17), e00324-18, /ga/6/17/e00324-18.atom. https://doi.org/10.1128/genomeA.00324-18.
(119) Albataineh, H.; Stevens, D. Marine Myxobacteria: A Few Good Halophiles. Marine Drugs 2018, 16 (6), 209. https://doi.org/10.3390/md16060209.
(120) Wang, Z.; Xu, Y.; Shao, J.; Wang, J.; Li, R. Genes Associated with 2-Methylisoborneol Biosynthesis in Cyanobacteria: Isolation, Characterization, and Expression in Response to Light. PLoS ONE 2011, 6 (4), e18665. https://doi.org/10.1371/journal.pone.0018665.
(121) Zhou, A.; Chen, Y. I.; Zane, G. M.; He, Z.; Hemme, C. L.; Joachimiak, M. P.; Baumohl, J. K.; He, Q.; Fields, M. W.; Arkin, A. P.; Wall, J. D.; Hazen, T. C.; Zhou, J. Functional Characterization of Crp/Fnr-Type Global Transcriptional Regulators in Desulfovibrio Vulgaris Hildenborough. Appl. Environ. Microbiol. 2012, 78 (4), 1168–1177. https://doi.org/10.1128/AEM.05666-11.
(122) Körner, H.; Sofia, H. J.; Zumft, W. G. Phylogeny of the Bacterial Superfamily of Crp-Fnr Transcription Regulators: Exploiting the Metabolic Spectrum by Controlling Alternative Gene Programs. FEMS Microbiol Rev 2003, 27 (5), 559–592. https://doi.org/10.1016/S0168-6445(03)00066-4.
(123) Nakaya, A.; Katayama, T.; Itoh, M.; Hiranuka, K.; Kawashima, S.; Moriya, Y.; Okuda, S.; Tanaka, M.; Tokimatsu, T.; Yamanishi, Y.; Yoshizawa, A. C.; Kanehisa, M.; Goto, S. KEGG OC: A Large-Scale Automatic Construction of Taxonomy-Based Ortholog Clusters. Nucleic Acids Research 2012, 41 (D1), D353–D357. https://doi.org/10.1093/nar/gks1239.
(124) PDB ID: 3GIW. CRYSTAL STRUCTURE OF a DUF574 Family Protein (SAV_2177) FROM STREPTOMYCES AVERMITILIS MA-4680 AT 1.45 A RESOLUTION. April 14, 2009.
(125) Hudson, C. M.; Lau, B. Y.; Williams, K. P. Islander: A Database of Precisely Mapped Genomic Islands in TRNA and TmRNA Genes. Nucleic Acids Research 2015, 43 (D1), D48–D53. https://doi.org/10.1093/nar/gku1072.
(126) Langille, M. G.; Hsiao, W. W.; Brinkman, F. S. Evaluation of Genomic Island Predictors Using a Comparative Genomics Approach. BMC Bioinformatics 2008, 9 (1), 329. https://doi.org/10.1186/1471-2105-9-329.
(127) Hsiao, W.; Wan, I.; Jones, S. J.; Brinkman, F. S. L. IslandPath: Aiding Detection of Genomic Islands in Prokaryotes. Bioinformatics 2003, 19 (3), 418–420. https://doi.org/10.1093/bioinformatics/btg004.
(128) Waack, S.; Keller, O.; Asper, R.; Brodag, T.; Damm, C.; Fricke, W.; Surovcik, K.; Meinicke, P.; Merkl, R. Score-Based Prediction of Genomic Islands in Prokaryotic Genomes Using Hidden Markov Models. BMC Bioinformatics 2006, 7 (1), 142. https://doi.org/10.1186/1471-2105-7-142.
(129) Zhang, J.; Kumar, S.; Nei, M. Small-Sample Tests of Episodic Adaptive Evolution: A Case Study of Primate Lysozymes. Molecular Biology and Evolution 1997, 14 (12), 1335–1338. https://doi.org/10.1093/oxfordjournals.molbev.a025743.
(130) Zhang, J. Evolution by Gene Duplication: An Update. Trends in Ecology & Evolution 2003, 18 (6), 292–298. https://doi.org/10.1016/S0169-5347(03)00033-8.
(131) Stiernagle, T. Maintenance of C. Elegans. WormBook 2006. https://doi.org/10.1895/wormbook.1.101.1.
(132) Page, F. C. A New Key to Freshwater and Soil Gymnamoebae: With Instructions for Culture; Freshwater Biological Assoc.: Ambleside, Cumbria, 1988.
(133) Caspers, H. F. C. Page: An Illustrated Key to Freshwater and Soil Amoebae with notes on Cultivation and Ecology. – With 64 fig., 155 pp. The Ferry House, Far Sawrey, Ambleside, Cumbria: Freshwater Biological Association, Scientific Publication No. 34. 1976. SBN 900 386 26 6, ISSN 0367-1857. £ 2.50. Int. Revue ges. Hydrobiol. Hydrogr. 1978, 63 (2), 289–289. https://doi.org/10.1002/iroh.19780630231.
(134) Weinstein, M. P.; Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 2019.
(135) Takeda, K.; Miura, M.; Takagi, T. Stepwise Formation of Complexes between Sodium Dodecyl Sulfate and Bovine Serum Albumin Detected by Measurements of Electric Conductivity, Binding Isotherm, and Circular Dichroism. Journal of Colloid and Interface Science 1981, 82 (1), 38–44. https://doi.org/10.1016/0021-9797(81)90121-1.
(136) Clinical and Laboratory Standards Institute; Weinstein, M. P. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; 2018.
(137) Forli, S. Epothilones: From Discovery to Clinical Trials. Curr Top Med Chem 2014, 14 (20), 2312–2321. https://doi.org/10.2174/1568026614666141130095855.
(138) Gray, K. C.; Palacios, D. S.; Dailey, I.; Endo, M. M.; Uno, B. E.; Wilcock, B. C.; Burke, M. D. Amphotericin Primarily Kills Yeast by Simply Binding Ergosterol. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (7), 2234–2239. https://doi.org/10.1073/pnas.1117280109.
(139) Imaris; BitPlane: South Windsor, CT, USA.
(140) WormLab; MBF Bioscience: Williston, VT USA.
(141) Xiong, H.; Pears, C.; Woollard, A. An Enhanced C. Elegans Based Platform for Toxicity Assessment. Sci Rep 2017, 7 (1), 9839. https://doi.org/10.1038/s41598-017-10454-3.
(142) Letunic, I.; Bork, P. Interactive Tree of Life (ITOL) v3: An Online Tool for the Display and Annotation of Phylogenetic and Other Trees. Nucleic Acids Res 2016, 44 (W1), W242–W245. https://doi.org/10.1093/nar/gkw290.
(143) Kim, P.-J.; Price, N. D. Genetic Co-Occurrence Network across Sequenced Microbes. PLoS Comput Biol 2011, 7 (12), e1002340. https://doi.org/10.1371/journal.pcbi.1002340.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top