Pourganjalikhan, Ali (2021) Adaptive Memory Management in Video Object Segmentation. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
5MBPourganjalikhan_MSc_S2022.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
Matching-based networks have achieved state-of-the-art performance for video object segmentation (VOS) tasks by storing every-k frames in an external memory bank for future inference. Storing the intermediate frames’ predictions provides the network with richer cues for segmenting an object in the current frame. However, the size of the memory bank gradually increases with the length of the video, which slows down inference speed and makes it impractical to handle arbitrary-length videos.
This thesis proposes an adaptive memory bank strategy for matching-based networks for semi-supervised video object segmentation (VOS) that can handle videos of arbitrary length by discarding obsolete features. Features are indexed based on their importance in the segmentation of the objects in previous frames. Based on the index, we discard unimportant features to accommodate new features. We present our experiments on DAVIS 2016, DAVIS 2017, and Youtube-VOS that
demonstrate that our method outperforms state-of-the-art that employ first-and-latest strategy with fixed-sized memory banks and achieves comparable performance to the every-k strategy with increasing-sized memory banks. Furthermore, experiments show that our method increases inference speed by up to 80% over the very-k and 35% over first-and-latest strategies.
We further investigate memory banks’ attention during the training by proposing two regularizations and studying their effects on performance.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Computer Science and Software Engineering |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Pourganjalikhan, Ali |
Institution: | Concordia University |
Degree Name: | M. Sc. |
Program: | Computer Science |
Date: | 26 November 2021 |
Thesis Supervisor(s): | Poullis, Charalambos |
ID Code: | 990044 |
Deposited By: | Ali Pourganjalikhan |
Deposited On: | 16 Jun 2022 15:01 |
Last Modified: | 16 Jun 2022 15:01 |
Repository Staff Only: item control page