Toobaee, Mohammadmahdi (2022) Understanding Geographical Patterns of Scientific Collaboration in the field of Artificial Intelligence. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
1MBToobaee_MSc_S2022.pdf - Accepted Version |
Abstract
The role of geographical proximity in facilitating inter-regional or inter-organizational collaborations has been studied thoroughly in recent years. However, the effect of geographical proximity on forming scientific collaborations at the individual level has not been addressed so far. Using co-publication data of AI researchers from 2000 to 2019, first, the effect of geographical proximity on the chance of future scientific collaboration among researchers was studied. The logit regression and machine learning classification results show that geographical distance is an essential impediment to scientific collaboration at the individual level despite the tremendous improvements in transportation and communication technologies during recent decades. Second, the interplay between geographical proximity and network proximity was examined to see whether network proximity can substitute geographical proximity in encouraging long-distance scientific collaborations. The results show that the effect of network proximity on the likelihood of scientific collaboration increases with geographical distance, implying that network proximity acts as a substitute for geographical proximity. Therefore, policies aiming at encouraging long-distance collaborations could positively affect scientific collaboration and future knowledge production.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Concordia Institute for Information Systems Engineering |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Toobaee, Mohammadmahdi |
Institution: | Concordia University |
Degree Name: | M.A. Sc. |
Program: | Quality Systems Engineering |
Date: | 10 February 2022 |
Thesis Supervisor(s): | Schiffauerova, Andrea and Ebadi, Ashkan |
ID Code: | 990307 |
Deposited By: | Mohammadmahdi Toobaee |
Deposited On: | 16 Jun 2022 15:18 |
Last Modified: | 16 Jun 2022 15:18 |
References:
Adams, J. (2013). The fourth age of research. Nature, 497(7451), 557–560. https://doi.org/10.1038/497557aAdams, J. D., Black, G. C., Clemmons, J. R., & Stephan, P. E. (2005). Scientific teams and institutional collaborations: Evidence from U.S. universities, 1981-1999. Research Policy, 34(3), 259–285. https://doi.org/10.1016/j.respol.2005.01.014
Aghion, P., & Howitt, P. (1992). A Model of Growth Through Creative Destruction. The Econometric Society, 60(2), 323–351.
Aiello, L. M., Barrat, A., Schifanella, R., Cattuto, C., Markines, B., & Menczer, F. (2012). Friendship prediction and homophily in social media. ACM Transactions on the Web, 6(2). https://doi.org/10.1145/2180861.2180866
Almendral, J. A., Oliveira, J. G., López, L., Mendes, J. F. F., & Sanjuán, M. A. F. (2007). The network of scientific collaborations within the European framework programme. Physica A: Statistical Mechanics and Its Applications, 384(2), 675–683. https://doi.org/10.1016/j.physa.2007.05.049
Autant-bernard, C., Billand, P., Frachisse, D., & Massard, N. (2007). Social distance versus spatial distance in R&D cooperation: Empirical evidence from European collaboration choices in micro and nanotechnologies. Papers in Regional Science, 86(3), 495–519. https://doi.org/10.1111/j.1435-5957.2007.00132.x
Balland, P. A. (2012). Proximity and the Evolution of Collaboration Networks: Evidence from Research and Development Projects within the Global Navigation Satellite System (GNSS) Industry. Regional Studies, 46(6), 741–756. https://doi.org/10.1080/00343404.2010.529121
Banchoff, T. (2002). Institutions, inertia and European Union research policy. Journal of Common Market Studies, 40(1), 1–21. https://doi.org/10.1111/1468-5965.00341
Barabâsi, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311(3), 590–614.
Bergé, L. R. (2017). Network proximity in the geography of research collaboration. Papers in Regional Science, 96(4), 785–815. https://doi.org/10.1111/pirs.12218
Bethard, S., & Jurafsky, D. (2010). Who should I cite: learning literature search models from citation behavior. Proceedings of the 19th ACM International Conference on Information and Knowledge Management, 609–618. https://doi.org/http://doi.acm.org/10.1145/1871437.1871517
Bignami, F., Mattsson, P., & Hoekman, J. (2020). The importance of geographical distance to different types of R&D collaboration in the pharmaceutical industry. Industry and Innovation, 27(5), 513–537. https://doi.org/10.1080/13662716.2018.1561361
Blau, J. R. (1974). Patterns of Communication Among Theoretical High Energy Physicists Author ( s ): Judith R . Blau Published by : American Sociological Association Stable URL : https://www.jstor.org/stable/2786390 American Sociological Association is collaborating with JST. Sociometry, 37(3), 391–406.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3(4–5), 993–1022. https://doi.org/10.1016/b978-0-12-411519-4.00006-9
Boschma, R. (2005). Proximity and innovation: A critical assessment. Regional Studies, 39(1), 61–74. https://doi.org/10.1080/0034340052000320887
Boschma, R., & Frenken, K. (2010). The spatial evolution of innovation networks: A proximity perspective. The Handbook of Evolutionary Economic Geography, June 2014, 120–138. https://doi.org/10.4337/9781849806497.00012
Brandusescu, A. (2021). Artificial intelligence policy and funding in Canada: Public investments, private interests. 1–62. https://www.mcgill.ca/centre-montreal/files/centre-montreal/aipolicyandfunding_report_updated_mar5.pdf
Breiman, L. (2001). Statistical modeling: The two cultures. Quality Engineering, 48, 81–82.
Breschi, S., & Lissoni, F. (2009). Mobility of skilled workers and co-invention networks: An anatomy of localized knowledge flows. Journal of Economic Geography, 9(4), 439–468. https://doi.org/10.1093/jeg/lbp008
Carayol, N., Bergé, L., Cassi, L., & Roux, P. (2019). Unintended triadic closure in social networks: The strategic formation of research collaborations between French inventors. Journal of Economic Behavior and Organization, 163, 218–238. https://doi.org/10.1016/j.jebo.2018.10.009
Castells, M. 1942-T. A.-T. T.-. (1996). The rise of the network society (2nd ed., w). Wiley-Blackwell. http://site.ebrary.com/id/10355273
Catalini, C. (2018). Microgeography and the direction of inventive activity. Management Science, 64(9), 4348–4364. https://doi.org/10.1287/mnsc.2017.2798
Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. (JAIR), 16, 321–357. https://doi.org/10.1613/jair.953
Clauset, A., Moore, C., & Newman, M. E. J. (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453(7191), 98–101. https://doi.org/10.1038/nature06830
Cunningham, S. W., & Werker, C. (2012). Proximity and collaboration in European nanotechnology. Papers in Regional Science, 91(4), 723–742. https://doi.org/10.1111/j.1435-5957.2012.00416.x
D’Este, P., Guy, F., & Iammarino, S. (2013). Shaping the formation of university-industry research collaborations: What type of proximity does really matter? Journal of Economic Geography, 13(4), 537–558. https://doi.org/10.1093/jeg/lbs010
Dahlander, L., & McFarland, D. A. (2013). Ties that last: Tie formation and persistence in research collaborations over time. Administrative Science Quarterly, 58(1), 69–110. https://doi.org/10.1177/0001839212474272
Ding, Y. (2011). Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks. Journal of Informetrics, 5(1), 187–203. https://doi.org/10.1016/j.joi.2010.10.008
Dong, Y., Johnson, R. A., & Chawla, N. V. (2015). Will This Paper Increase Your h -index? Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. https://doi.org/10.1145/2684822.2685314
Ebadi, A., & Schiffauerova, A. (2015). How to become an important player in scientific collaboration networks? Journal of Informetrics, 9(4), 809–825. https://doi.org/10.1016/j.joi.2015.08.002
Ebadi, A., & Schiffauerova, A. (2016). How to boost scientific production? A statistical analysis of research funding and other influencing factors. Scientometrics, 106(3), 1093–1116. https://doi.org/10.1007/s11192-015-1825-x
European Commission. (2014). Webseite: What is Horizon 2020? http://ec.europa.eu/programmes/horizon2020/en/what-horizon-2020
Fafchamps, M., van der Leij, M. J., & Goyal, S. (2010). Matching and Network Effects. Journal of the European Economic Association, 8(1), 203–231. https://doi.org/10.1111/j.1542-4774.2010.tb00500.x
Freeman, R. B., Ganguli, I., & Murciano-Goroff, R. (2014). Why and Wherefore of Increased Scientific Collaboration. In National Bureau of Economic Research Working Paper. https://doi.org/10.7208/chicago/9780226286860.003.0001
Frenken, K., Hardeman, S., & Hoekman, J. (2009). Spatial scientometrics: Towards a cumulative research program. Journal of Informetrics, 3(3), 222–232. https://doi.org/10.1016/j.joi.2009.03.005
Gertler, M. S. (1995). “Being There”: Proximity , Organization , and Culture in the Development and Adoption of Advanced Manufacturing Technologies. Economic Geography, 71(1), 1–26.
Gertler, M. S. (2003). Tacit knowledge and the economic geography of context, or the undefinable tacitness of being (there). Journal of Economic Geography, 3(1), 75–99. https://doi.org/10.1093/jeg/3.1.75
Getoor, L. (2005). Link-based Classification BT - Advanced Methods for Knowledge Discovery from Complex Data (S. Bandyopadhyay, U. Maulik, L. B. Holder, & D. J. Cook (eds.); pp. 189–207). Springer London. https://doi.org/10.1007/1-84628-284-5_7
Gilly, J., & Torre, A. (2000). Proximity Relations : Elements for an Analytical Framework. Industrial Networks and Proximity, 1–17.
Gittelman, M. (2007). Does geography matter for scienee-based firms? Epistemic communities and the geography of research and patenting in biotechnology. Organization Science, 18(4), 724–741. https://doi.org/10.1287/orsc.1070.0249
Glänzel, W. (2001). National characteristics in international scientific co-authorship relations. Scientometrics, 51(1), 69–115. https://doi.org/10.1023/A:1010512628145
Google. (n.d.). Geocoding API. https://developers.google.com/maps/documentation/geocoding/overview
Government of Canada. (n.d.). Search Grants and Contributions. https://search.open.canada.ca/en/gc/?_ga=2.258231562.1488605449.1607055646-2066370278.1596646179
Government of Canada, P. M. O. (2018). Prime Minister announces investment in artificial intelligence to create over 16,000 jobs for Canadians. https://www.newswire.ca/news-releases/prime-minister-announces-investment-in-artificial-intelligence-to-create-over-16000-jobs-for-canadians-702095332.html
Government, U. (2020). The Trump Administration Is Investing $1 Billion in Research Institutes to Advance Industries of the Future. https://www.quantum.gov/the-trump-administration-is-investing-1-billion-in-research-institutes-to-advance-industries-of-the-future/
Gulati, R., & Gargiulo, M. (1999). Where do interorganizational networks come from? American Journal of Sociology, 104(5), 1439–1493. https://doi.org/10.1086/210179
Hoekman, J., Frenken, K., & Tijssen, R. J. W. (2010). Research collaboration at a distance: Changing spatial patterns of scientific collaboration within Europe. Research Policy, 39(5), 662–673. https://doi.org/10.1016/j.respol.2010.01.012
Hoekman, J., Frenken, K., & van Oort, F. (2009). The geography of collaborative knowledge production in Europe. Annals of Regional Science, 43(3 SPEC. ISS.), 721–738. https://doi.org/10.1007/s00168-008-0252-9
Howells, J. R. L. (2002). Tacit knowledge, innovation and economic geography. Urban Studies, 39(5–6), 871–884. https://doi.org/10.1080/00420980220128354
Inman, J. (1835). Haversine Formula – Calculate geographic distance on earth. https://www.igismap.com/haversine-formula-calculate-geographic-distance-earth/
Jackson, B. M. O., & Rogers, B. W. (2007). Meeting Strangers and Friends of Friends : How Random Are Social Networks ? Author ( s ): Matthew O . Jackson and Brian W . Rogers Published by : American Economic Association Stable URL : http://www.jstor.com/stable/30035025 REFERENCES Linked references . 97(3), 890–915.
Jaffe, A. B., & Hu, A. G. Z. (2003). Patent citations and international knowledge flow: the cases of Korea and Taiwan. International Journal of Industrial Organization, 21(6), 849–880. http://biblio.iztapalapa.uam.mx:2060/science?_ob=ArticleURL&_udi=B6V8P-48BC1SB-1&_user=1695873&_coverDate=06%2F30%2F2003&_rdoc=6&_fmt=full&_orig=browse&_srch=doc-info(%23toc%235876%232003%23999789993%23431275%23FLA%23display%23Volume)&_cdi=5876&_sort=d&_d
Jaffe, A. B., & Trajtenberg, M. (1999). International knowledge flows: evidence from patent citations. Economics of Innovation and New Technology, 8(1–2), 105–136. https://doi.org/10.1080/10438599900000006
Johnson, D. K. N., & Mareva, M. (2002). It’s a Small(er) World: The Role of Geography and Networks in Biotechnology Innovation (2002-01). http://hdl.handle.net/10419/23232
Jones, B. F., Wuchty, S., & Uzzi, B. (2008). Multi-University Research Teams: Shifting Impact, Geography, and Stratification in Science. Science, 322(5905), 1259–1262. https://doi.org/10.1177/107554709401500403
Jones, C. (1995). R & D-Based Models of Economic Growth. Journal of Political Economy, 103(4), 759–784.
Katz, J. (1994). Geographical proximity and scientific collaboration. Scientometrics, 31(1), 31–43. https://doi.org/10.1007/BF02018100
Katz, J., & Martin, B. (1997). What is research collaboration? Research Policy, 26(1), 1–18. https://doi.org/10.1016/S0048-7333(96)00917-1
Kirat, T., & Lung, Y. (1999). Innovation and Proximity. European Urban and Regional Studies, 6(1), 27–38. https://doi.org/10.1177/096977649900600103
Knoben, J., & Oerlemans, L. A. G. (2006). Proximity and inter-organizational collaboration: A literature review. International Journal of Management Reviews, 8(2), 71–89. https://doi.org/10.1111/j.1468-2370.2006.00121.x
Krackhardt, D. (1999). The Ties That Torture: Simmelian Tie Analysis in Organizations. Research in the Sociology of Organizations, 16.
Lichtenwalter, R. N., Lussier, J. T., & Chawla, N. V. (2010). New Perspectives and Methods in Link Prediction. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 243–252. https://doi.org/10.1145/1835804.1835837
Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. In I. Guyon, U. V Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 30). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
Lundvall, B.-A. 1941-. (1992). National systems of innovation : towards a theory of innovation and interactive learning. In TA - TT -. Pinter Publishers ; http://www.gbv.de/dms/hbz/toc/ht004483061.PDF
Maggioni, M. A., Nosvelli, M., & Uberti, T. E. (2007). Space versus networks in the geography of innovation: A European analysis. Papers in Regional Science, 86(3), 471–493. https://doi.org/10.1111/j.1435-5957.2007.00130.x
Mascia, D., Pallotti, F., & Angeli, F. (2017). Don’t stand so close to me: competitive pressures, proximity and inter-organizational collaboration. Regional Studies, 51(9), 1348–1361. https://doi.org/10.1080/00343404.2016.1185517
Mcpherson, M., Smith-lovin, L., & Cook, J. M. (2001). B IRDS OF A F EATHER : Homophily in Social Networks.
Merton , R. K. (1973). The sociology of science : theoretical and empirical investigations. University of Chicago Press.
Miguélez, E., & Moreno, R. (2014). What attracts knowledge workers? The role of space and social networks. Journal of Regional Science, 54(1), 33–60. https://doi.org/10.1111/jors.12069
Moradabadi, B., & Meybodi, M. R. (2017). Link prediction in fuzzy social networks using distributed learning automata. Applied Intelligence, 47(3), 837–849. https://doi.org/10.1007/s10489-017-0933-0
Morescalchi, A., Pammolli, F., Penner, O., Petersen, A. M., & Riccaboni, M. (2015). The evolution of networks of innovators within and across borders: Evidence from patent data. Research Policy, 44(3), 651–668. https://doi.org/10.1016/j.respol.2014.10.015
Narin, F., Stevens, K., & Whitlow, E. (1991). Scientific Co-operation in Europe and the Citation of Multinationally Authored Papers. 21(3), 313–323.
Newman, M. E. J. (2001). The structure of scientific col laboration networks. Proceedings of the National Academy of Sciences, 98(2), 404–409. https://doi.org/10.1073/pnas.021544898
Ponds, R., van Oort, F., & Frenken, K. (2007). The geographical and institutional proximity of research collaboration. Papers in Regional Science, 86(3), 423–443. https://doi.org/10.1111/j.1435-5957.2007.00126.x
PwC. (2017). Sizing the prize - PwC’s Global Artificial Intelligence Study: Exploiting the AI Revolution. What’s the real value of AI for your business and how can you capitalise? PwC. https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html
Rallet, A., & Torre, A. (1999). Is geographical proximity necessary in the innovation networks in the era of global economy? GeoJournal, 49(4), 373–380. https://doi.org/10.1023/A:1007140329027
Röder, M., Both, A., & Hinneburg, A. (2015). Exploring the space of topic coherence measures. WSDM 2015 - Proceedings of the 8th ACM International Conference on Web Search and Data Mining, 399–408. https://doi.org/10.1145/2684822.2685324
Sarigöl, E., Pfitzner, R., Scholtes, I., Garas, A., & Schweitzer, F. (2014). Predicting scientific success based on coauthorship networks. EPJ Data Science, 3(1), 9. https://doi.org/10.1140/epjds/s13688-014-0009-x
Schall, D. (2014). Link prediction in directed social networks. Social Network Analysis and Mining, 4(1), 1–14. https://doi.org/10.1007/s13278-014-0157-9
Scherngell, T., & Barber, M. J. (2009). Spatial interaction modelling of cross-region R&D collaborations: Empirical evidence from the 5th EU framework programme. Papers in Regional Science, 88(3), 531–546. https://doi.org/10.1111/j.1435-5957.2008.00215.x
Song, Y.-Y., & Lu, Y. (2015). Decision tree methods: applications for classification and prediction. Shanghai Archives of Psychiatry, 27(2), 130–135. https://doi.org/10.11919/j.issn.1002-0829.215044
Storper, M., & Venables, A. J. (2004). Buzz: Face-to-face contact and the urban economy. Journal of Economic Geography, 4(4), 351–370. https://doi.org/10.1093/jnlecg/lbh027
Ter Wal, A. L. J. (2014). The dynamics of the inventor network in german biotechnology: Geographic proximity versus triadic closure. Journal of Economic Geography, 14(3), 589–620. https://doi.org/10.1093/jeg/lbs063
Torre, André, & Gilly, J. P. (2000). On the analytical dimension of proximity dynamics. Regional Studies, 34(2), 169–180. https://doi.org/10.1080/00343400050006087
Torre, Andre, & Rallet, A. (2005). Proximity and localization. Regional Studies, 39(1), 47–59. https://doi.org/10.1080/0034340052000320842
Wagner, C. S., & Leydesdorff, L. (2005). Network structure, self-organization, and the growth of international collaboration in science. Research Policy, 34(10), 1608–1618. https://doi.org/10.1016/j.respol.2005.08.002
Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039.
Xu, R. (2013). Improvements to random forest methodology. Dissertation (Doctor of Philosophy) Iowa State University, 1–88. http://lib.dr.iastate.edu/etd/13052/
Zeller, C. (2004). North Atlantic innovative relations of Swiss pharmaceuticals and the proximities with regional biotech arenas. Economic Geography, 80(1), 83–111. https://doi.org/10.1111/j.1944-8287.2004.tb00230.x
Repository Staff Only: item control page