Salimibeni, Mohammad (2023) BLE-based Indoor Localization and Contact Tracing Approaches. PhD thesis, Concordia University.
Preview |
Text (application/pdf)
31MBSalimibeni_PhD_F2023.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
Internet of Things (IoT) has penetrated different aspects of modern life with smart sensors being prevalent within our surrounding indoor environments. Furthermore, dependence on IoT-based Contact Tracing (CT) models has significantly increased mainly due to the COVID-19 pandemic. There is, therefore, an urgent quest to develop/design efficient, autonomous, trustworthy, and secure indoor CT solutions leveraging accurate indoor localization/tracking approaches. In this context, the first objective of this Ph.D. thesis is to enhance accuracy of Bluetooth Low Energy (BLE)-based indoor localization. BLE-based localization is typically performed based on the Received Signal Strength Indicator (RSSI). Extreme fluctuations of the RSSI occurring due to different factors such as multi-path effects and noise, however, prevent the BLE technology to be a reliable solution with acceptable accuracy for dynamic tracking/localization in indoor environments. In this regard, first, an IoT dataset is constructed based on multiple thoroughly separated indoor environments to incorporate the effects of various interferences faced in different spaces. The constructed dataset is then used to develop a Reinforcement Learning (RL)-based information fusion strategy to form a multiple-model implementation consisting of RSSI, Pedestrian dead reckoning (PDR), and Angle-of-Arrival (AoA)-based models. In the second part of the thesis, the focus is devoted to application of multi-agent Deep Neural Networks (DNN) models for indoor tracking. DNN-based approaches are, however, prone to overfitting and high sensitivity to parameter selection, which results in sample inefficiency. Moreover, data labelling is a time-consuming and costly procedure. To address these issues, we leverage Successor Representations (SR)-based techniques, which can learn the expected discounted future state occupancy, and the immediate reward of each state. A Deep Multi-Agent Successor Representation framework is proposed that can adapt quickly to the changes in a multi-agent environment faster than the Model-Free (MF) RL methods and with a lower computational cost compared to Model-Based (MB) RL algorithms. In the third part of the thesis, the developed indoor localization techniques are utilized to design a novel indoor CT solution, referred to as the Trustworthy Blockchain-enabled system for Indoor Contact Tracing (TB-ICT) framework. The TB-ICT is a fully distributed and innovative blockchain platform exploiting the proposed dynamic Proof of Work (dPoW) approach coupled with a Randomized Hash Window (W-Hash) and dynamic Proof of Credit (dPoC) mechanisms.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Concordia Institute for Information Systems Engineering |
---|---|
Item Type: | Thesis (PhD) |
Authors: | Salimibeni, Mohammad |
Institution: | Concordia University |
Degree Name: | Ph. D. |
Program: | Information and Systems Engineering |
Date: | 17 April 2023 |
Thesis Supervisor(s): | Mohammadi, Arash |
Keywords: | Internet of Things (IoT), BLE, Indoor Localization, Reinforcement Learning, Contact Tracing |
ID Code: | 992380 |
Deposited By: | Mohammad SalimiBeni |
Deposited On: | 16 Nov 2023 19:35 |
Last Modified: | 16 Nov 2023 19:35 |
References:
\bibitem{Salimi:IoTJ2022}M. Salimibeni, Z. Hajiakhondi-Meybodi, A. Mohammadi and Y. Wang,
\newblock "TB-ICT: A Trustworthy Blockchain-Enabled System for Indoor Contact Tracing in Epidemic Control,"
\newblock {\em IEEE Internet of Things Journal, 2022}, doi: 10.1109/JIOT.2022.3223329. In Press.
\bibitem{Salimi:Sensors2022}
M. Salimibeni, P. Malekzadeh, A. Mohammadi and K.N. Plataniotis,
\newblock "MAAKF-SR: Multi-Agent Adaptive Kalman Filtering-based Successor Representation,"
\newblock {\em Sensors,} vol. 22, no. 4, 2022.
\bibitem{Salimi:APSIPA2023}
M. Salimibeni, A. Mohammadi, Z. Hajiakhondi, M. Atashi, P. Malekzadeh, and K.N. Plataniotis,
\newblock "Reinforcement Learning-based Information Fusion for Multiple Model BLE-based Indoor Localization/Tracking,"
\newblock {\em Submitted to APSIPA Trans. on Signal and Information Processing (ATSIP)}, 2023.
\bibitem{Salimi:ICASSP2023}
M. Salimibeni, A. Mohammadi, N. Plataniotis,
\newblock "RL-IFF: Reinforcement Learning based Information Fusion for Indoor Localization”,"
\newblock {\em Submitted to IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 2023.
\bibitem{Salimi:wfIOT}
M. Salimibeni, Z. HajiAkhondi-Meybodi, A. Mohammadi,
\newblock "TB-ICT: A Trustworthy Blockchain-Enabled System for Indoor Contact Tracing in Epidemic Control,"
\newblock {\em IEEE 8th World Forum on Internet of Things (WF-IoT)}, 2022.
\bibitem{Salimi:Icassp}
M. Salimibeni, P. Malekzadeh, A. Mohammadi, A. Assa and K. N. Plataniotis,
\newblock "MAKF-SR: Multi- Agent Adaptive Kalman Filtering-based Successor Representations,"
\newblock {\em IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 2021, pp. 8037-8041.
\bibitem{Salimi:Eusipco}
M. Salimibeni, M. Atashi, P. Malekzadeh, Z. HajiAkhondi-Meybodi, K. N. Plataniotis, A. Mohammadi,
\newblock ``IoT-TD: IoT Dataset for Multiple Model BLE-based IndoorLocalization/Tracking,''
\newblock {\em 28th European Signal Processing Conference (EUSIPCO)}, 2020, pp. 1697-1701.
\bibitem{Salimi:Asilomar}
M. Salimibeni, P. Malekzadeh, A. Mohammadi and K. N. Plataniotis,
\newblock ``Distributed Hybrid Kalman Temporal Differences for Reinforcement Learning,''
\newblock {\em IEEE International Asilomar Conference on Signals, Systems, and Computers}, 2020, pp. 579-583.
\bibitem{Salimi:sensors2019}
M. Salimibeni, P. Malekzadeh, M. Atashi, M. Barbulescu, K. N. Plataniotis and A. Mohammadi,
\newblock ``Event-Triggered Monitoring/Communication of Inertial Measurement Unit for IoT Applications,''
\newblock {\em IEEE SENSORS}, 2019, pp. 1-4.
\bibitem{Li:2020}
Y. Li, X. Hu, Y. Zhuang, Z. Gao, P. Zhang and N. El-Sheimy,
\newblock "Deep Reinforcement Learning (DRL): Another Perspective for Unsupervised Wireless Localization,"
\newblock {\em IEEE Internet of Things Journal}, invol. 7, no. 7, pp. 6279-6287, July 2020.
\bibitem{P. Silva}
P. Silva, V. Kaseva, E. Lohan,
\newblock "Wireless Positioning in IoT: A Look at Current \& Future Trends,"
\newblock {\em Sensors}, vol. 8, no. 8, 2018.
\bibitem{Spachos:2020}
P. Spachos and K. N. Plataniotis,
\newblock "BLE Beacons for Indoor Positioning at an Interactive IoT-Based Smart Museum,"
\newblock {\em IEEE Systems Journal}, vol. 14, no. 3, pp. 3483-3493, Sept. 2020.
\bibitem{Ng:2021}
P. C. Ng, P. Spachos and K. N. Plataniotis,
\newblock "COVID-19 and Your Smartphone: BLE-Based Smart Contact Tracing,"
\newblock {\em IEEE Systems Journal}, doi: 10.1109/JSYST.2021.3055675., 2021.
\bibitem{Zafari:2017}
F. Zafari, I. Papapanagiotou, M. Devetsikiotis, T.J. Hacker,
\newblock ``An iBeacon based Proximity and Indoor Localization System,''
\newblock https://arxiv.org/abs/1703.07876, 2017.
\bibitem{Dinh:2020}
T. T. Dinh, N. Duong and K. Sandrasegaran,
\newblock "Smartphone-Based Indoor Positioning Using BLE iBeacon and Reliable Lightweight Fingerprint Map,"
in IEEE Sensors Journal, vol. 20, no. 17, pp. 10283-10294, 1 Sept.1, 2020, doi: 10.1109/JSEN.2020.2989411.
\bibitem{Zheng:2017}
K. Zheng, \textit{et al.},
\newblock "Energy-Efficient Localization and Tracking of Mobile Devices in Wireless Sensor Networks,"
\newblock {\em IEEE Transactions on Vehicular Technology}, 2017.
\bibitem{Davidson:2017}
P. Davidson and R. Piche,
\newblock "A Survey of Selected Indoor Positioning Methods for Smartphones,"
\newblock {\em IEEE Communications Surveys \& Tutorials}, vol. 19, no. 2, pp. 1347-1370, 2017.
\bibitem{Hoang:2019}
M. T. Hoang, B. Yuen, X. Dong, T. Lu, R. Westendorp and K. Reddy,
\newblock "Recurrent Neural Networks for Accurate RSSI Indoor Localization,"
\newblock in IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10639-10651, Dec. 2019, doi: 10.1109/JIOT.2019.2940368.
\bibitem{Farahsari:2022}
P. S. Farahsari, A. Farahzadi, J. Rezazadeh and A. Bagheri,
\newblock ``A Survey on Indoor Positioning Systems for IoT-Based Applications,''
\newblock {\em IEEE Internet of Things Journal}, vol. 9, no. 10, pp. 7680-7699, 15 May15, 2022.
\bibitem{Parvin:SPL}
P. Malekzadeh, A. Mohammadi, M. Barbulescu, and K.N. Plataniotis,
\newblock "STUPEFY: Set-Valued Box Particle Filtering for BLE-based Indoor Localization"
\newblock {\em IEEE Signal Processing Letters}, 2019. In Press.
\bibitem{Atashi:FUSION}
M. Atashi, M. Salimibeni, P. Malekzadeh, M. Barbulescu, K. N. Plataniotis and A. Mohammadi,
\newblock "Multiple Model BLE-based Tracking via Validation of RSSI Fluctuations under Different Conditions,"
\newblock {\em International Conference on Information Fusion (FUSION)}, Ottawa, ON, Canada, 2019, pp. 1-6.
\bibitem{D.An}
D. An and J. Lee,
\newblock "Derivation of an Approximate Location Estimate in Angle-of-Arrival Based Localization in the Presence of Angle-of-Arrival Estimate Error and Sensor Location Error,"
\newblock {\em IEEE World Symposium on Communication Engineering (WSCE)}, 2018, pp. 1-5.
\bibitem{Sark}
V. Sark and E. Grass,
\newblock "Modified Equivalent Time Sampling for Improving Precision of Time-of-Flight based Localization,"
\newblock {\em IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)}, 2013, pp. 370-374.
\bibitem{G. Fokin}
G. Fokin, A. Kireev and A. H. A. Al-odhari,
\newblock "TDOA Positioning Accuracy Performance Evaluation for ARC Sensor Configuration,"
\newblock {\em Systems of Signals Generating and Processing in the Field of on Board Communications}, 2018, pp. 1-5.
\bibitem{Sadowski:2019}
S. Sadowski and P. Spachos,
\newblock ``Optimization of BLE Beacon Density for RSSI-Based Indoor Localization,'' 2019 IEEE \newblock {\em International Conference on Communications Workshops (ICC Workshops)}, Shanghai, China, 2019, pp. 1-6.
\bibitem{Sadowski:2018}
S. Sadowski and P. Spachos,
\newblock ``RSSI-Based Indoor Localization With the Internet of Things,''
\newblock {\em IEEE Access}, vol. 6, pp. 30149-30161, 2018.
\bibitem{Kumar}
S. Kumar, R. Ramaswami, and K. Tomar,
\newblock ``Localization in Wireless Sensor Networks using Directionally Information,"
\newblock {\em IEEE International Advance Computing Conference (IACC)}, 2013, pp. 577-582.
\bibitem{Parvin:access}
P. Malekzadeh, M. Salimibeni, A. Mohammadi, A. Assa and K. N. Plataniotis,
\newblock "MM-KTD: Multiple Model Kalman Temporal Differences for Reinforcement Learning,"
\newblock{\em IEEE Access}, vol. 8, pp. 128716-128729, 2020.
\bibitem{WLANbook}
A. Kushki, K.N. Plataniotis and A.N. Venetsanopoulos
\newblock ``WLAN Positioning Systems: Principles and Applications in Location-based Services,''
\newblock {\em Cambridge University Press}, 2012.
\bibitem{C. Ranasinghe}
C. Ranasinghe and C. Kray,
\newblock ``Location Information Quality: A Review,''
\newblock {\em Sensors (Basel, Switzerland)}, 2018, 18(11), 3999.
\bibitem{P. Jeongyeup}
P. Jeongyeup, K. JeongGil, and S. Hyungsik,
\newblock ``A Measurement Study of BLE iBeacon and Geometric Adjustment Scheme for Indoor Location-Based Mobile Applications,''
\newblock {\em Mobile Information Systems}, vol. 2016, Article ID 8367638, 13 pages.
\bibitem{fingerprinting:2017}
M.C. Cara, J.L. Melgarejo, G.B. Rocca, L.O. Barbosa and I.G. Varea,
\newblock ``An analysis of multiple criteria and setups for Bluetooth smartphone-based indoor localization mechanism,''
\newblock {\em Journal of Sensors}, 2017.
\bibitem{fingerprint_trilateration}
YB. Bai, \textit{et al.},
\newblock ``A new method for improving Wi-Fi-based indoor positioning accuracy,'' \newblock {\em J. Location-based Services}, vol. 8, no. 3, pp. 135-147, 2014.
\bibitem{Cho:ENC}
S. Y. Cho and C. G. Park,
\newblock ``Threshold-less Zero-Velocity Detection Algorithm for Pedestrian Dead Reckoning,''
\newblock {\em European Navigation Conference (ENC)}, Warsaw, Poland, 2019, pp. 1-5.
\bibitem{Foxlin:PDR}
E. Foxlin,
\newblock ``Pedestrian tracking with shoe-mounted inertial sensors,''
\newblock {\em IEEE Computer Graphics and Applications}, vol. 25, no. 6, pp. 38-46, Nov.-Dec. 2005.
\bibitem{Harle:Survey}
R. Harle,
\newblock ``A Survey of Indoor Inertial Positioning Systems for Pedestrians,''
\newblock {\em IEEE Communications Surveys and Tutorials}, vol. 15, no. 3, pp. 1281-1293, Third Quarter 2013.
%%%%%
\bibitem{Kang:Sensors}
W. Kang and Y. Han,
\newblock ``SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization,''
\newblock {\em IEEE Sensors Journal}, vol. 15, no. 5, pp. 2906-2916, May 2015.
\bibitem{Monfared:2018}
S. Monfared, T. Nguyen, L. Petrillo, P. De Doncker, and F. Horlin,
\newblock ``Experimental Demonstration of BLE Transmitter Positioning Based on AOA Estimation,''
\newblock {\em IEEE International Symposium on Personal, Indoor and Mobile Radio Communications}, Bologna, Dec. 2018, pp. 856-859.
\bibitem{Cominelli:2019}
M. Cominelli, P Patras, and F Gringoli,
\newblock ``Dead on Arrival: An Empirical Study of The Bluetooth 5.1 Positioning System,''
\newblock {\em International Workshop on Wireless Network Test beds, Experimental Evaluation and Characterization}, pp. 13-20. Oct. 2019.
\bibitem{Hu:2019} P. Hu, Q. Bao and Z. Chen,
\newblock ``Target Detection and Localization Using Non-Cooperative Frequency Agile Phased Array Radar Illuminator,''
\newblock {\em IEEE Access}, vol. 7, pp. 111277-111286, Aug. 2019.
\bibitem{Zhou:2011} J. Zhou, H. Zhang and L. Mo,
\newblock ``Two-dimension localization of passive RFID tags using AOA estimation,''
\newblock {\em IEEE International Instrumentation and Measurement Technology Conference}, May 2011, pp. 1-5.
\bibitem{Zhang:2018} X. Zhang, W. Chen, W. Zheng, Z. Xia and Y. Wang,
\newblock ``Localization of Near-Field Sources: A Reduced-Dimension MUSIC Algorithm,''
\newblock{ \em IEEE Communications Letters}, vol. 22, no. 7, pp. 1422-1425, Jul. 2018.
\bibitem{Hossain:2017} M. D. Hossain and A. S. Mohan,
\newblock ``Eigenspace Time-Reversal Robust Capon Beamforming for Target Localization in Continuous Random Media,''
\newblock{\em EEE Antennas and Wireless Propagation Letters}, vol. 16, pp. 1605-1608, Jan. 2017.
\bibitem{Kulin:2018} M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter,
\newblock ``End-to-End Learning From Spectrum Data: A Deep Learning Approach for Wireless Signal Identification in Spectrum Monitoring Applications,''
\newblock {\em IEEE Access}, vol. 6, pp. 18484-18501, Mar. 2018.
\bibitem{Hajiakhondi:2020_1}
Z.~HajiAkhondi-Meybodi, M.~S.~Beni, K. N. Plataniotis, and A. Mohammadi
\newblock ``Bluetooth Low Energy-based Angle of Arrival Estimation via Switch Antenna Array for Indoor Localization,''
\newblock {\em International Conference on Information Fusion}, July 2020.
\bibitem{Hajiakhondi:2020_2}
Z.~HajiAkhondi-Meybodi, M.~S.~Beni, A. Mohammadi, and K. N. Plataniotis,
\newblock ``Bluetooth Low Energy-based Angle of Arrival Estimation in Presence of Rayleigh Fading,''
\newblock Accepted in {\em IEEE International Conference on Systems, Man, and Sybernetics}, 2020.
\bibitem{Hajiakhondi:SMC2020}
Z.~HajiAkhondi-Meybodi, M.~S.~Beni, A. Mohammadi, and K. N. Plataniotis,
\newblock ``Bluetooth Low Energy-based Angle of Arrival Estimation in Presence of Rayleigh Fading,''
\newblock {\em IEEE International Conference on Systems, Man, and Sybernetics}, 2020.
\bibitem{Wu:2019} K. Wu, W. Ni, T. Su, R. P. Liu and Y. J. Guo,
\newblock ``Expeditious Estimation of Angle-of-Arrival for Hybrid Butler Matrix Arrays,''
\newblock {\em IEEE Transactions on Wireless Communications} vol. 18, no. 4, pp. 2170-2185, Apr. 2019.
\bibitem{Nguyen:2019}
N. H. Nguyen, and K. Dogancay,
\newblock ``Closed-Form Algebraic Solutions for Angle-of-Arrival Source Localization With Bayesian Priors,''
\newblock {\em IEEE Transactions on Wireless Communications}, vol. 18, no. 8, May 2019, pp. 3827--3842.
\bibitem{Cheng:2015}
L. Cheng, Y. Wu, J. Zhang and L. Liu, ``Subspace Identification for DOA Estimation in Massive/Full-Dimension MIMO Systems: Bad Data Mitigation and Automatic Source Enumeration," \newblock {\em IEEE Transactions on Signal Processing}, vol. 63, no. 22, pp. 5897-5909, Nov. 2015.
\bibitem{Shafin:2016}
R. Shafin, L. Liu, J. Zhang and Y. Wu, ``DoA Estimation and Capacity Analysis for 3-D Millimeter Wave Massive-MIMO/FD-MIMO OFDM Systems," \newblock {\em IEEE Transactions on Wireless Communications}, vol. 15, no. 10, pp. 6963-6978, Oct. 2016.
\bibitem{Yassin}
A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, Ch. Yuen, R. Raulefs, and E. Aboutanios, ``Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications," \newblock {\em IEEE Commun. Surveys Tuts.}, vol. 19, no. 2, pp. 1327-1346, Secondquarter 2017.
\bibitem{He:2014}
J. He, Y. Geng, F. Liu and C. Xu, ``CC-KF: Enhanced TOA Performance in Multipath and NLOS Indoor Extreme Environment," \newblock {\em EEE Sensors Journal}, vol. 14, no. 11, pp. 3766-3774, Nov. 2014.
\bibitem{Zhang:2016}
C. Zhang, X. Bao, Q. Wei, Q. Ma, Y. Yang, and Q. Wang, ``A Kalman filter for UWB positioning in LOS/NLOS scenarios," \newblock {\em in Proc. International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services}, Nov. 2016, pp. 73-78.
\bibitem{Exel:2014}
R. Exel and T. Bigler, ``ToA ranging using subsample peak estimation and equalizer-based multipath reduction," \newblock {\em in Proc. IEEE Wireless Communications and Networking Conference (WCNC)}, Istanbul, Apr. 2014, pp. 2964-2969.
\bibitem{Wang2017}
X. Wang, X. Wang, and S. Mao. \newblock``CiFi: Deep convolutional neural networks for indoor localization with 5 GHz Wi-Fi," \newblock {\em IEEE International Conference on Communications (ICC)}, pp. 1-6, May 2017.
\bibitem{Wang2018}
X. Wang, X. Wang and S. Mao, \newblock``Deep Convolutional Neural Networks for Indoor Localization with CSI Images," \newblock {\em IEEE Trans. Netw. Sci. Eng.}, vol. 7, no. 1, pp. 316-327, Mar. 2020.
\bibitem{Comiter:2018}
M. Comiter, and H. T. Kung, \newblock``Localization Convolutional Neural Networks Using Angle of Arrival Images," \newblock {\em in Proc. IEEE Global Communications Conference}, Abu Dhabi, Dec. 2018, pp. 1-7.
\bibitem{Khan:2019}
A. Khan, S. Wang and Z. Zhu, ``Angle-of-Arrival Estimation Using an Adaptive Machine Learning Framework," \newblock {\em IEEE Communications Letters}, vol. 23, no. 2, pp. 294-297, Feb. 2019.
\bibitem{Hsieh:2019}
C. Hsieh, J. Chen and B. Nien, \newblock``Deep Learning-Based Indoor Localization Using Received Signal Strength and Channel State Information," \newblock {\em IEEE Access}, vol. 7, pp. 33256-33267, 2019.
\bibitem{Ferrag2021}
M. A. Ferrag, L. Shu and K. -K. R. Choo,
\newblock ``Fighting COVID-19 and Future Pandemics With the Internet of Things: Security and Privacy Perspectives,"
\newblock{ \em IEEE/CAA Journal of Automatica Sinica}, vol. 8, no. 9, pp. 1477-1499, September 2021.
%===================
% Literature Review - Prominant Contact Tracing (CT) applications
%===================
\bibitem{Bay:2020}
J. Bay, J. Kek, A. Tan, C. S. Hau, L. Yongquan, and J. Tan, T. A. Quy,
\newblock ``BlueTrace: A privacy-preserving protocol for communitydriven contact tracing across borders,”
\newblock {\em Singapores Government Technology Agency}, Singapore, White Paper, p. 9, 2020.
\bibitem{Harvard2020}
\newblock ``Harvard College. Surveys, app. to track COVID-19,"
\newblock Available: https://www.hsph.harvard.edu/coronavirus/covid-19-response-public-health-in-action/surveys-apps-to-track-covid-19/, Acc. on: Dec. 27, 2020.
\bibitem{Apple:2020}
\newblock ``Exposure Notification,”
Apple Inc., Cupertino, CA, USA and Google LLC., Mountain View, CA, USA, May 2020.
\bibitem{Levy:2020}
I. Levy,
\newblock ``The Security Behind the NHS Contact Tracing App,”
Accessed: May 8, 2020. [Online]. Available: https://www.ncsc.gov.uk/blog-post/security-behind-nhs-contact-tracing-app.
\bibitem{Mozur:2020}
P. Mozur, R. Zhong, and A. Krolik,
\newblock ``In Coronavirus Fight, China Gives Citizens a Color Code, With Red Flags,”
New York, NY, USA, 2020. [Online]. Available: https://www.nytimes.com/2020/03/01/business/china-coronavirus-surveillance.html.
\bibitem{Ahmed:2020}
N. Ahmed, R. A. Michelin, W. Xue, S. Ruj, R. Malaney, S. S.Kanhere, A. Seneviratne, W. Hu, H. Janicke, and S. K. Jha,
\newblock ``A Survey of COVID-19 Contact Tracing Apps,”
\newblock {\em IEEE Access}, vol. 8, pp. 134 577–134 601, 2020.
\bibitem{Zhu:2021}
L. Zhu, X. Tang, M. Shen, F. Gao, J. Zhang and X. Du,
\newblock ``Privacy-Preserving ML Training in IoT Aggregation Scenarios,”
\newblock {\em IEEE Internet of Things Journal}, vol. 8, no. 15, pp. 12106-12118, Aug, 2021.
\bibitem{Vaudenay:2020}
S. Vaudenay,
\newblock ``Centralized or decentralized? the contact tracing dilemma,”
\newblock {\em TIACR Cryptol}, ePrint Arch., vol. 2020, p. 531, 2020.
\bibitem{Beskorovajnov:2020}
W. Beskorovajnov, F. Dörre, G. Hartung, \textit{et al.},
\newblock ``Contra corona: Contact tracing against the coronavirus by bridging the centralized–decentralized divide for stronger privacy,”
\newblock {\em Crypt. ePrint Archive}, Report 2020/505, 2020.
\bibitem{Islam2022}
A. Islam, A. Al Amin and S. Y. Shin,
\newblock ``FBI: A Federated Learning-Based Blockchain-Embedded Data Accumulation Scheme Using Drones for Internet of Things,"
\newblock {\em IEEE Wireless Communications Letters}, vol. 11, no. 5, pp. 972-976, May 2022.
\bibitem{Islam2020}
A. Islam, S.Y. Shin,
\newblock ``A Blockchain-based Secure Healthcare Scheme with the Assistance of Unmanned Aerial Vehicle in Internet of Things,''
\newblock {\em Computers \& Electrical Engineering}, vol. 84, 2020.
\bibitem{Islam2021}
A. Islam, T. Rahim, M. Masuduzzaman and S. Y. Shin,
\newblock ``A Blockchain-Based Artificial Intelligence-Empowered Contagious Pandemic Situation Supervision Scheme Using Internet of Drone Things,"
\newblock{ \em IEEE Wireless Communications}, vol. 28, no. 4, pp. 166-173, August 2021.
\bibitem{Naren:2021}
Naren, A. Tahiliani, V. Hassija, V. Chamola, S. S. Kanhere and M. Guizani,
\newblock ``Privacy-Preserving and Incentivized Contact Tracing for COVID-19 Using Blockchain,”
\newblock {\em IEEE Internet of Things Magazine}, vol. 4, no. 3, pp. 72-79, September 2021.
\bibitem{Choo2020}
K. R. Choo, Z. Yan, W. Meng,
\newblock ``Editorial: Blockchain in Industrial IoT Applications: Security and Privacy Advances, Challenges, and Opportunities,"
\newblock{ \em IEEE Trans. Ind. Informat.}, vol. 16, no. 6, pp. 4119-4121, 2020.
\bibitem{Javaid2020}
U. Javaid and B. Sikdar,
\newblock ``A Checkpoint Enabled Scalable Blockchain Architecture for Industrial Internet of Things,"
\newblock{ \em IEEE Trans. Ind. Informat.}, Oct. 2020.
\bibitem{Nguyen:2020}
D. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne,
\newblock ``Blockchain and ai-based solutions to combat coronavirus (covid19)-like epidemics: A survey,''
Preprints 2020, 2020040325.
\bibitem{Zhang2019}
L. Zhang, T. Zhang, Q. Wu, Y. Mu and F. Rezaeibagha,
\newblock ``Secure Decentralized Attribute-Based Sharing of Personal Health Records with Blockchain,"
\newblock{ \em IEEE Internet of Things Journal}, 2021.
\bibitem{Dai2019}
H. -N. Dai, Z. Zheng and Y. Zhang,
\newblock ``Blockchain for Internet of Things: A Survey,"
\newblock {\em IEEE Internet of Things Journal}, vol. 6, no. 5, pp. 8076-8094, Oct. 2019.
\bibitem{Wang:2021}
P. Wang, C. Lin, M. S. Obaidat, Z. Yu, Z. Wei and Q. Zhang,
\newblock ``Contact Tracing Incentive for COVID-19 and Other Pandemic Diseases From a Crowdsourcing Perspective,''
\newblock{ \em IEEE Internet of Things Journal}, vol. 8, no. 21, pp. 15863-15874, 1 Nov.1, 2021.
\bibitem{DWang:2022}
D. Wang, X. Chen, L. Zhang, Y. Fang and C. Huang,
\newblock ``A Blockchain based Human-to-Infrastructure Contact Tracing Approach for COVID-19,''
\newblock{ \em IEEE Internet of Things Journal}, vol. 9, no. 14, pp. 12836-12847, 15 July15, 2022.
%[10]
\bibitem{Garofalo:2021}
G. Garofalo, T. Van hamme, D. Preuveneers, W. Joosen, A. Abidin and M. A. Mustafa,
\newblock ``PIVOT: PrIVate and effective cOntact Tracing,''
\newblock{ \em IEEE Internet of Things Journal}, 2021.
%[11]
\bibitem{Azad:2021}
M. A. Azad, \textit{et al.},
\newblock ``A First Look at Privacy Analysis of COVID-19 Contact-Tracing Mobile Applications,''
\newblock{ \em IEEE Internet of Things Journal}, vol. 8, no. 21, pp. 15796-15806, 1 Nov.1, 2021.
\bibitem{Song:2021}
J. Song, T. Gu, X. Feng, Y. Ge, and P. Mohapatra,
\newblock ``Blockchain Meets COVID-19: A Framework for Contact Information Sharing and Risk Notification System,”
\newblock {\em IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems}, 2021, pp. 269-277.
\bibitem{Ferrag:2021}
M. A. Ferrag and L. Shu,
\newblock ``The Performance Evaluation of Blockchain-Based Security and Privacy Systems for the Internet of Things: A Tutorial,"
\newblock{ \em IEEE Int. of Things J.}, vol. 8, no. 24, pp. 17236-17260, 2021.
\bibitem{Martinez:2020}
M. Martinez, A. Hekmati, B. Krishnamachari and S. Yun,
\newblock ``Mobile Encounter-based Social Sybil Control,"
\newblock{ \em Int. Con. Software Defined Systems (SDS)}, 2020, pp. 190-195.
\bibitem{Xu2020}
H. Xu, \textit{et al.},
\newblock ``Beeptrace: Blockchain-Enabled Privacy-Preserving Contact Tracing for Covid-19 Pandemic and Beyond,"
\newblock{ \em IEEE Internet Things J.}, pp. 1-1, Sep. 2020.
\bibitem{Hasan:2021}
H. R. Hasan, K. Salah, R. Jayaraman, I. Yaqoob, M. Omar and S. Ellahham,
\newblock ``COVID-19 Contact Tracing Using Blockchain,”
\newblock {\em IEEE Access}, vol. 9, pp. 62956-62971, 2021.
\bibitem{Micali2020}
S. Micali,
\newblock ``Algorand’s approach to Covid-19 tracing,"
Tech. Rep., 2020.
\bibitem{Lv2022}
W. Lv, S. Wu, C. Jiang, Y. Cui, X. Qiu, and Y. Zhang,
\newblock ``Towards Large-Scale and Privacy-Preserving Contact Tracing in COVID-19 Pandemic: A Blockchain Perspective,"
\newblock {\em IEEE Transactions on Network Science and Engineering}, vol. 9, no. 1, pp. 282-298, 2022.
\bibitem{Avitabile2020}
G. Avitabile, V. Botta, V. Iovino, and I. Visconti,
\newblock ``Towards defeating mass surveillance and SARS-CoV-2: The pronto-C2 fully decentralized automatic contact tracing system,"
\newblock IACR Cryptol. ePrint Arch., vol. 2020, p. 493, May 2020.
\bibitem{DIMY:2021}
N. Ahmed, R. A. Michelin, W. Xue, G. Dharma Putra, S. Ruj, S. S. Kanhere, and S. Jha,
\newblock ``DIMY: Enabling privacy-preserving contact tracing,”
2021, arXiv:2103.05873. [Online]. Available: http:// arxiv.org/abs/2103.05873.
\bibitem{Peng2021}
K. Peng, M. Li, H. Huang, C. Wang, S. Wan and K. -K. R. Choo, \newblock ``Security Challenges and Opportunities for Smart Contracts in Internet of Things: A Survey,"
\newblock{ \em IEEE Internet of Things Journal}, vol. 8, no. 15, pp. 12004-12020, 2021.
\bibitem{Esteves2020}
P. Esteves-Verissimo, J. Decouchant, M. Völp, A. Esfahani, and R. Graczyk,
\newblock ``PriLok: Citizen-protecting distributed epidemic tracing,"
2020, arXiv:2005.04519. [Online]. Available: http://arxiv.org/abs/2005.04519.
\bibitem{Yanagihara:2022}
T. Yanagihara and A. Fujihara,
\newblock ``Cross-Referencing Method for Scalable Public Blockchain,”
\newblock {\em Internet of Things Journal}, Volume 15, 100419, 2022.
\bibitem{Jing2021}
G. Jing, H. Bai, J. George, A. Chakrabortty,
\newblock Model-free optimal control of linear multi-agent systems via decomposition and hierarchical approximation.
\newblock{ \em IEEE Trans. Control Netw. Syst.}, vol. 8, no. 3, pp. 1069-1081, 2021. %MDPI: Please add volume and page. If no page or volume, please add doi.
\bibitem{Turchetta2020}
M. Turchetta, A. Krause, S. Trimpe,
\newblock ``Robust Model-free Reinforcement Learning with Multi-objective Bayesian Optimization,"
\newblock In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May--31 August, 2020.
\bibitem{Liu2020}
Q. Liu, T. Yu, Y. Bai, C. Jin,
\newblock ``A sharp analysis of model-based reinforcement learning with self-play,"
\newblock {\em arXiv}, 2020, arXiv:2010.01604.
\bibitem{Bellman1954}
R. Bellman,
\newblock ``The Theory of Dynamic Programming," Tech. Rep.,
\newblock RAND Corp: Santa Monica, CA, USA, 1954.
\bibitem{Vertes}
E. V\'{e}rtes,and M. Sahani,
\newblock ``A Neurally Plausible Model Learns Successor Representations in Partially Observable Environments,"
\newblock{ \em Advances in Neural Information Processing Systems 32},
pp.13714-13724, 2019.
\bibitem{Sam}
S. Blakeman, and D. Mareschal,
\newblock ``A Complementary Learning Systems Approach to Temporal Difference Learning,"
\newblock {\em Neural Networks}, vol. 122,
2020, pp. 218-230.
\bibitem{Song2021}
Y. Song, W. Sun,
\newblock ``Pc-mlp: Model-based reinforcement learning with policy cover guided exploration,"
\newblock In Proceedings of the International Conference on Machine Learning, Virtual, 18--24 July
2021.
\bibitem{Geerts2019}
J. P.Geerts, K. L. Stachenfeld, N. Burgess,
\newblock ``Probabilistic Successor Representations with Kalman Temporal Differences,"
\newblock{ \em arXiv}, 2019, arXiv:1910.02532.
\bibitem{Machado2021}
M. C. Machado, A. Barreto, D. Precup,
\newblock ``Temporal Abstraction in Reinforcement Learning with the Successor Representation,"
\newblock{ \em arXiv},2021, arXiv:2110.05740.
\bibitem{Moskovitz2021}
T. H. Moskovitz, J. Parker-Holder, A. Pacchiano, M.Arbel, M. I. Jordan,
\newblock ``Tactical optimism and pessimism for deep reinforcement learning,"
\newblock In Proceedings of the NeurIPS, Virtual, 6-14 December
2021.
\bibitem{Hasselt2016}
H. Van Hasselt, A. Guez, D.Silver,
``Deep Reinforcement Learning with Double Q-Learning,"
\newblock AAAI: Phoenix, AZ, USA, 2016, p. 5.
\bibitem{Babu2012}
G. S. Babu, S. Suresh,
\newblock ``Meta-cognitive neural network for classification problems in a sequential learning framework,"
\newblock {\em Neurocomputing},2012,81, 86--96.
%6
\bibitem{Riedmiller2005}
M. Riedmiller,
\newblock ``Neural Fitted Q Iteration-first Experiences with a Data Efficient Neural Reinforcement Learning Method,"
\newblock {\em European Conference on Machine Learning}; Springer: Berlin, Heidelberg, %MDPI: Please add the location of the publisher.
2005, pp. 317--328.
\bibitem{Tang}
Y. Tang, H. Guo,T. Yuan, X. Gao, X. Hong, Y. Li, J. Qiu, Y. Zuo, and J. Wu,
\newblock ``Flow Splitter: A Deep Reinforcement Learning-Based Flow Scheduler for Hybrid Optical-Electrical Data Center Network,"
\newblock{\em IEEE Access}, vol. 7, pp.129955-129965, 2019.
%\bibitem{Hu}
%C. Hu, and M. Xu,
%\newblock ``Adaptive Exploration Strategy With Multi-Attribute Decision-Making for Reinforcement Learning,"
%\newblock{\em IEEE Access}, vol. 8, pp. 32353-32364, 2020.
\bibitem{Kim}
M. Kim, S. Lee, J. Lim, J. Choi, and S.G. Kang,
\newblock ``Unexpected Collision Avoidance Driving Strategy Using Deep Reinforcement Learning,"
\newblock{\em IEEE Access}, vol. 8, pp. 17243-17252, 2020.
\bibitem{Xie}
J. Xie, Z. Shao, Y. Li, Y. Guan, and J. Tan,
\newblock ``Deep reinforcement learning with optimized reward functions for robotic trajectory planning,"
\newblock{\em IEEE Access}, vol. 7, pp. 105669-105679, 2019.
\bibitem{Mnih2013}
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M.Riedmiller,
\newblock ``Playing Atari with Deep Reinforcement Learning,"
\newblock Technical Report, Deepmind Technologies: London, %MDPI: Please add the location of the publisher.
2013, arXiv:1312.5602[cs.LG].
\bibitem{Lillicrap2015}
T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra,
\newblock ``Continuous control with deep reinforcement learning,"
\newblock {\em arXiv}, 2015, arXiv:1509.02971.
\bibitem{Tsitsiklis1997}
J.N. Tsitsiklis, B. Van Roy,
\newblock ``An analysis of temporal-difference learning with function approximation,"
\newblock{\em IEEE Transactions on Automatic Control}, 42 (5) (May 1997) 674–690.
\bibitem{Bertsekas2004}
D.P. Bertsekas, V.S. Borkar, A. Nedic,
\newblock ``Improved temporal difference methods with linear function approximation, Learning and Approximate Dynamic Programming,"
\newblock 2004, pp. 231–255.
\bibitem{Miller1990}
W. T. Miller, F. H. Glanz, and L. G. Kraft,
\newblock ``Cmas: An Associative Neural Network Alternative to Backpropagation,"
\newblock {\em Proceedings of the IEEE}, vol. 78, no. 10, pp. 1561-1567, 1990.
\bibitem{Haykin1994}
S. Haykin,
\newblock ``Neural Networks: A Comprehensive Foundation,''
\newblock {\em Prentice Hall PTR}, 1994.
\bibitem{Barreto2008}
A. d. M. S. Barreto and C. W. Anderson,
\newblock ``Restricted Gradient-descent Algorithm for Value-function Approximation in Reinforcement Learning,"
\newblock {\em Artificial Intelligence}, vol. 172, no. 4-5, pp. 454-482, 2008.
\bibitem{Menache2005}
I. Menache, S. Mannor, and N. Shimkin,
\newblock ``Basis Function Adaptation in Temporal Difference Reinforcement Learning,"
\newblock {\em Annals of Operations Research}, vol. 134, no. 1, pp. 215-238, 2005.
\bibitem{Choi2006}
D. Choi and B. Van Roy,
\newblock ``A generalized Kalman filter for Fixed Point Approximation and Efficient Temporal-difference Learning,"
\newblock {\em Discrete Event Dynamic Systems}, vol. 16, no. 2, pp. 207-239, 2006.
\bibitem{Engel2005}
Y. Engel,
\newblock ``Algorithms and Representations for Reinforcement Learning,''
\newblock {\em Hebrew University of Jerusalem}, 2005.
\bibitem{Bradtke1996}
S. J. Bradtke and A. G. Barto,
\newblock ``Linear Least-squares Algorithms for Temporal Difference Learning,"
\newblock {\em Machine Learning}, vol. 22, no. 1-3, pp. 33-57, 1996.
%\bibitem{Liu2021}
%E.Z. Liu, A. Raghunathan, P. Liang, C. Finn,
% \newblock `` Decoupling exploration and exploitation for meta-reinforcement learning without sacrifices,"
% \newblock {\em International Conference on Machine Learning}, 2021, PMLR. pp. 6925–6935.
\bibitem{Geist2013}
M. Geist and O. Pietquin,
\newblock ``Algorithmic Survey of Parametric Value Function Approximation,"
\newblock {\em IEEE Transactions on Neural Networks and Learning Systems}, vol. 24, no. 6, pp. 845-867, 2013.
\bibitem{Geist2010}
M. Geist and O. Pietquin,
\newblock ``Kalman Temporal Differences,"
\newblock {\em Journal of Artificial Intelligence Research}, vol. 39, pp. 483-532, 2010.
\bibitem{Arash:TNSRE:2015}
A. Mohammadi and K. N. Plataniotis,
\newblock ``Distributed Widely Linear Multiple-Model Adaptive Estimation,"
\newblock {\em IEEE Transactions on Signal and Information Processing over Networks}, vol. 1, no. 3, pp. 164-179, 2015.
\bibitem{Arash:Sensors2016}
C. Yang, A. Mohammadi, Q-W. Chen,
\newblock `` Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter,"
\newblock {\em Sensors}, vol. 16, no. 11, 1835, 2016.
\bibitem{Arash:TSP:2015}
A. Mohammadi and K. N. Plataniotis,
\newblock ``Improper Complex-Valued Multiple-Model Adaptive Estimation,"
\newblock {\em IEEE Transactions on Signal Processing}, vol. 63, no. 6, pp. 1528-1542, 2015.
\bibitem{Mehra1970}
R. Mehra,
\newblock ``On the Identification of Variances and Adaptive Kalman Filtering,"
\newblock {\em IEEE Transactions on Automatic Control}, vol. 15, no. 2, pp. 175-184, 1970.
\bibitem{Assa2018}
A. Assa and K. N. Plataniotis,
\newblock ``Similarity-based Multiple Model Adaptive Estimation,"
\newblock {\em IEEE Access}, vol. 6, pp. 36 632-36 644, 2018.
\bibitem{Kitao2017}
T. Kitao, M. Shirai, and T. Miura,
``Model Selection based on Kalman Temporal Differences Learning,"
\newblock {\em IEEE International Conference on Collaboration and Internet Computing (CIC)}, 2017, pp. 41-47.
\bibitem{Ma2018}
C. Ma, J. Wen, and Y. Bengio,
\newblock ``Universal successor representations for transfer reinforcement learning,"
\newblock {\em arXiv preprint}, arXiv:1804.03758, 2018.
\bibitem{Momennejad2017}
I. Momennejad, E.M. Russek, J.H. Cheong, M.M. Botvinick, N.D. Daw, S.J.Gershman,
\newblock ``The successor representation in human reinforcement learning,"
\newblock {\em Nature Human Behaviour}, 1 (9) (2017) 680–692.
\bibitem{Russek2017}
E.M. Russek, I. Momennejad, M.M. Botvinick, S.J. Gershman, N.D. Daw,
\newblock ``Predictive representations can link model-based reinforcement learning to model-free mechanisms,"
\newblock {\em PLoS Computational Biology}, 13 (9) (2017) e1005768.
\bibitem{Sutton2018}
R. S. Sutton and A. G. Barto,
\newblock ``Reinforcement Learning: An Introduction,"
\newblock {\em Cambridge}, MA, USA: MIT Press, 2018.
\bibitem{Chan2020}
S.C. Chan, S. Fishman, J. Canny, et al.,
\newblock ``Measuring the reliability of reinforcement learning algorithms,"
\newblock {\em International Conference on Learning Representations}, 2020.
\bibitem{Parvin2021}
P. Malekzadeh, M. Salimibeni, M. Hou, A. Mohammadi, K. N. Plataniotis,
\newblock ``AKF-SR: Adaptive Kalman Filtering-Based Successor Representation,"
\newblock {\em Neurocomputing}, vol. 467, no. 7, pp. 476-490, January 2022.
\bibitem{Spano}
S. Spanò, G.C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Matta, A. Nannarelli, and M. Re,
\newblock ``An Efficient Hardware Implementation of Reinforcement Learning: The Q-Learning," Algorithm,"
\newblock {\em IEEE Access}, vol. 7, pp. 186340-186351, 2019.
\bibitem{Seo}
M. Seo, L.F. Vecchietti, S. Lee, and D. Har,
\newblock ``Rewards Prediction-Based Credit Assignment for Reinforcement Learning With Sparse Binary Rewards,"
\newblock {\em IEEE Access}, vol. 7, pp. 118776-118791, 2019.
\bibitem{DrMing1}
A. Toubman \textit{et al.},
\newblock ``Modeling behavior of Computer Generated Forces with Machine Learning Techniques, the NATO Task Group approach,"
\newblock {\em IEEE Int. Con. Systems, Man, and Cyb. (SMC)}, Budapest, 2016, pp. 001906-001911.
\bibitem{DrMing2}
J. J. Roessingh \textit{et al.},
\newblock ``Machine Learning Techniques for Autonomous Agents in Military Simulations - Multum in Parvo,"
\newblock {\em IEEE Int. Con. Systems, Man, and Cyb. (SMC)}, Banff, AB, 2017, pp. 3445-3450.
%\bibitem{Parvin:access}
%P. Malekzadeh, M. Salimibeni, A. Mohammadi, A. Assa and K. N. Plataniotis,
%\newblock ``MM-KTD: Multiple Model Kalman Temporal Differences for Reinforcement Learning,"
%\newblock{\em IEEE Access}, vol. 8, pp. 128716-128729, 2020.
\bibitem{Hu}
H. Hu, S. Song and C. L. P. Chen,
\newblock ``Plume Tracing via Model-Free Reinforcement Learning Method,"
\newblock{ \em IEEE Transactions on Neural Networks and Learning Systems}, vol. 30, no. 8, pp. 2515-2527, Aug. 2019.
\bibitem{Venkat}
H. K. Venkataraman, and P. J. Seiler,
\newblock ``Recovering Robustness in Model-Free Reinforcement Learning,"
\newblock{\em American Control Conference (ACC)}, Philadelphia, PA, USA, 2019, pp. 4210-4216.
\bibitem{Williams:2017}
G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou,
\newblock ``Information Theoretic MPC for Model-based Reinforcement Learning,"
\newblock {\em International Conference on Robotics and Automation (ICRA)}, 2017.
\bibitem{Bellman:1954}
R. Bellman,
\newblock ``The Theory of Dynamic Programming,"
\newblock {\em RAND Corp Santa Monica CA}, Tech. Rep., 1954.
\bibitem{Ducarouge}
A. Ducarouge, O. Sigaud,
\newblock ``The Successor Representation as a Model of Behavioural Flexibility,"
\newblock{ \em Journ{\'e}es Francophones sur la Planification, la D{\'e}cision et l'Apprentissage pour la conduite de syst{\`e}mes (JFPDA)}, 2017.
\bibitem{Lazaric:2008}
A. Lazaric, M. Restelli, and A. Bonarini,
\newblock ````Reinforcement Learning in Continuous Action Spaces Through Sequential Monte Carlo Methods,"
\newblock {\em Advances in Neural Information Processing Systems}, 2008, pp. 833-840.
\bibitem{Castro:2008}
D. D. Castro, D. Volkinshtein and R. Meir,
\newblock ``Temporal Difference Based Actor Critic Learning - Convergence and Neural Implementation,"
\newblock {\em Neural Information Processing Systems Conference}, 2008.
%5
\bibitem{Keogh:2011}
E. Keogh and A. Mueen,
\newblock``Curse of Dimensionality,"
\newblock {\em Encyclopedia of Machine Learning}, Springer, 2011, pp. 257-258.
\bibitem{Ge:2019}
Y. Ge, F. Zhu, X. Ling, and Q. Liu,
\newblock ``Safe Q-Learning Method Based on Constrained Markov Decision Processes,"
\newblock {\em IEEE Access}, vol. 7, pp. 165007-165017, 2019.
%7
\bibitem{Mnih:2013}
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,
\newblock ``Playing Atari with Deep Reinforcement Learning,"
\newblock {\em arXiv:1312.5602}, 2013.
%%8
%\bibitem{Lillicrap:}
%T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
%\newblock ``Continuous Control with Deep Reinforcement Learning,"
%\newblock {\em arXiv:1509.02971}, 2015.
%34
\bibitem{Sukhbaatar:2017}
S. Sukhbaatar, I. Kostrikov, A. Szlam, and R. Fergus,
\newblock ``Intrinsic motivation and automatic curricula via asymmetric self-play,``
\newblock {\em arXiv}, preprint arXiv:1703.05407, 2017.
%13
\bibitem{Haykin:1994}
S. Haykin,
\newblock ``Neural Networks: A Comprehensive Foundation,''
\newblock {\em Prentice Hall PTR}, 1994.
%%14
%\bibitem{14}
%W. T. Miller, F. H. Glanz, and L. G. Kraft,
%\newblock ``Cmas: An Associative Neural Network Alternative to Backpropagation,"
%\newblock {\em Proceedings of the IEEE}, vol. 78, no. 10, pp. 1561-1567, 1990.
%15
\bibitem{Kretchmar:1997}
R. M. Kretchmar and C. W. Anderson,
\newblock ``Comparison of CMACs and Radial Basis Functions for Local Function Approximators in Reinforcement Learning,"
\newblock {\em International Conference on Neural Networks}, vol. 2. IEEE, 1997, pp. 834-837.
%16
\bibitem{Konidaris:2011}
G. Konidaris, S. Osentoski, and P. S. Thomas,
``Value Function Approximation in Reinforcement Learning using the Fourier Basis,"
\newblock {\em AAAI}, vol. 6, 2011, p. 7.
%17
\bibitem{Menache:2005}
I. Menache, S. Mannor, and N. Shimkin,
\newblock ``Basis Function Adaptation in Temporal Difference Reinforcement Learning,"
\newblock {\em Annals of Operations Research}, vol. 134, no. 1, pp. 215-238, 2005.
\bibitem{Doya:2002}
K. Doya, K. Samejima, K.-i. Katagiri, and M. Kawato,
\newblock ``Multiple Model-based Reinforcement Learning,"
\newblock {\em Neural Computation}, 14(6), 1347–1369, 2002.
%25
\bibitem{Lainiotis:1976}
D. G. Lainiotis,
\newblock ``Partitioning: A Unifying Framework for Adaptive Systems, i: Estimation,"
\newblock {\em Proceedings of the IEEE}, vol. 64, no. 8, pp. 1126-1143, 1976.
\bibitem{Khaleghi:2013}
B.Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi
\newblock ``Multisensor data fusion: A review of the state-of-the-art,''
\newblock {\em Information Fusion}, Volume 14, Issue 1, July 2013.
\bibitem{Federico:2013}
C. Federico,
\newblock ``A review of data fusion techniques,''
\newblock {\em Sci. World J.}, 1–19, 2013.
\bibitem{Meng:2020}
T. Meng, X. Jing, Z. Yan, and W. Pedrycz,
\newblock ``A survey on machine learning for data fusion,''
\newblock {\em Information Fusion}, Volume 57, 2020.
\bibitem{Chen:2020}
S. Chen, J. Wang, H. Li, Z. Wang, F. Liu and S. Li,
\newblock ``Top-Down Human-Cyber-Physical Data Fusion Based on Reinforcement Learning,''
\newblock {\em IEEE Access}, vol. 8, pp. 134233-134245, 2020.
\bibitem{Liu:2021}
X. Liu, C. Sun, M. Zhou, C. Wu, B. Peng and P. Li,
\newblock ``Reinforcement Learning-Based Multislot Double-Threshold Spectrum Sensing With Bayesian Fusion for Industrial Big Spectrum Data,''
\newblock {\em IEEE Transactions on Industrial Informatics}, vol. 17, no. 5, pp. 3391-3400, May 2021.
\bibitem{Guo:2022}
J. Guo, Q. Liu and E. Chen,
\newblock ``A Deep Reinforcement Learning Method For Multimodal Data Fusion in Action Recognition,''
\newblock {\em IEEE Signal Processing Letters}, vol. 29, pp. 120-124, 2022.
% 41
\bibitem{Abirami:2015}
T. Abirami, E. Taghavi, R. Tharmarasa, T. Kirubarajan, and A.-C. Boury-Brisset,
\newblock ``Fusing social network data with hard data,''
\newblock {\em Proc. 18th Int. Conf. Inf. Fusion (Fusion)}, 2015, pp. 652–658.
% 42
\bibitem{Xiao:2020}
F. Xiao,
\newblock ``A new divergence measure for belief functions in D–S evidence theory for multisensor data fusion,''
\newblock {\em Inf. Sci., } vol. 514, pp. 462–483, Apr. 2020.
\bibitem{Zhu:2022}
C. Zhu, F. Xiao, Z. Cao,
\newblock ``A generalized Rényi divergence for multi-source information fusion with its application in EEG data analysis,''
\newblock {\em Inf. Sci., } vol. 605, pp. 225-243, 2022.
% 43
\bibitem{GZhao:2020}
G. Zhao, A. Chen, G. Lu, and W. Liu,
\newblock ``Data fusion algorithm based on fuzzy sets and D-S theory of evidence,''
\newblock {\em Tsinghua Sci. Technol.,} vol. 25, no. 1, pp. 12–19, Feb. 2020.
\bibitem{Surathong:2021}
S. Surathong, C. Maisen and P. Piyawongwisal,
\newblock ``Modified Fuzzy Dempster-Shafer Theory for Decision Fusion,''
\newblock {\em 13th Int. Conf. on Information Tech. and Elec. Eng. (ICITEE),} 2021, pp. 244-248.
\bibitem{Li:2022}
J. Li, and Q. Wang,
\newblock ``Multi-modal bioelectrical signal fusion analysis based on different acquisition devices and scene settings: Overview, challenges, and novel orientation,''
\newblock {\em Information Fusion,} Volume 79, 2022.
\bibitem{Wang:2019}
P. Wang, L. T. Yang, J. Li, J. Chen, and S. Hu,
\newblock ``Data fusion in cyber-physical-social systems: State-of-the-art and perspectives,''
\newblock {\em Information Fusion,} vol. 51, Nov. 2019.
\bibitem{Himeur:2022}
Y. Himeur, B. Rimal, A. Tiwary, and A. Amira,
\newblock ``Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives,''
\newblock {\em Information Fusion}, Volume 86–87, 2022.
\bibitem{Saha:2020}
P. Saha and S. Mukhopadhyay,
\newblock ``Multispectral Information Fusion With Reinforcement Learning for Object Tracking in IoT Edge Devices,''
\newblock {\em IEEE Sensors Journal}, vol. 20, no. 8, pp. 4333-4344, April, 2020.
\bibitem{Han:2022}
Y. Han et al.,
\newblock ``Deep Reinforcement Learning for Robot Collision Avoidance With Self-State-Attention and Sensor Fusion,''
\newblock {\em IEEE Robotics and Automation Letters,} vol. 7, no. 3, pp. 6886-6893, July 2022.
\bibitem{Zhou:2020}
T. Zhou, M. Chen and J. Zou,
\newblock ``Reinforcement learning based data fusion method for multi-sensors,''
\newblock {\em IEEE/CAA Journal of Automatica Sinica}, vol. 7, no. 6, pp. 1489-1497, November 2020.
\bibitem{Liu:2022}
P. Liu, F. Bao, X. Yao, C. Zhang, et al.,
\newblock ``Multi-type data fusion framework based on deep reinforcement learning for algorithmic trading,''
\newblock {\em Applied Intelligence,} 2022.
\bibitem{Yu:2022}
J. Yu, P. Wang, T. Koike-Akino and P. V. Orlik,
\newblock ``Multi-Modal Recurrent Fusion for Indoor Localization,''
\newblock {\em IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 2022.
\bibitem{Sou:2022}
S. -I. Sou, F. -J. Wu and W. -C. Wu,
\newblock ``JoLo: Multi-device Joint Localization based on Wireless Data Fusion,''
\newblock {\em IEEE Transactions on Mobile Computing}, 2022.
\bibitem{Dinh:2021}
T. -M. T. Dinh, N. -S. Duong and Q. -T. Nguyen,
\newblock ``Developing a Novel Real-Time Indoor Positioning System Based on BLE Beacons and Smartphone Sensors,''
\newblock {\em IEEE Sensors Journal}, vol. 21, no. 20, pp. 23055-23068, 15 Oct.15, 2021.
% # ##### End of Chapter 2 #####################################################################################
\bibitem{BLE51}
M. Woolley,
\newblock ``Bluetooth Direction Finding: A Technical Overview,''
\newblock version 1.0, Revision Date: 20 March 2019.
\bibitem{Arash:2015-1}
X. Zhong, A. Mohammadi, A.B. Premkumar, and A. Asif,
\newblock ``A Distributed Particle Filtering Approach for Multiple Acoustic Source Tracking using an Acoustic Vector Sensor Network,''
\newblock {\em Signal Processing}, vol. 108, pp. 589-603, March 2015.
\bibitem{Fang:2011}
J. Fang, H. Sun, J. Cao, X. Zhang, Y. Tao,
\newblock ``A novel calibration method of magnetic compass based on ellipsoid fitting,''
\newblock {\em IEEE Trans. on Instrument. Meas.}, 60, 2053–2061, 2011.
% # ##### End of Chapter 3 #####################################################################################
\bibitem{Hutter2008}
M. Hutter and S. Legg,
\newblock ``Temporal Difference Updating without a Learning Rate,"
\newblock {\em Advances in Neural Information Processing Systems}, 2008, pp. 705-712.
\bibitem{Sutton1996}
R. S. Sutton,
\newblock ``Generalization in Reinforcement Learning: Successful Examples using Sparse Coarse Coding,"
\newblock {\em Advances in Neural Information Processing Systems}, 1996, pp. 1038-1044.
\bibitem{Xia2019}
W. Xia, C. Di, H. Guo, and S. Li, \newblock ``Reinforcement Learning Based Stochastic Shortest Path Finding in Wireless Sensor Networks,"
\newblock {\em IEEE Access}, vol. 7, pp.157807-157817, 2019.
\bibitem{Watkins1992} C. J. Watkins and P. Dayan,
\newblock ``Q-learning,"
\newblock {\em Machine Learning}, vol. 8, no. 3-4, pp. 279-292, 1992.
\bibitem{Li2019}
J. Li, T. Chai, F. L. Lewis, Z. Ding and Y. Jiang,
\newblock ``Off-Policy Interleaved $Q$ -Learning: Optimal Control for Affine Nonlinear Discrete-Time Systems,"
\newblock {\em IEEE Transactions on Neural Networks and Learning Systems,}, vol. 30, no. 5, pp. 1308-1320, May 2019.
\bibitem{Lowe2017}
R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
\newblock ``Multi-agent actor-critic for mixed cooperative-competitive environments,"
\newblock {\em Annual Conference on Neural Information Processing Systems (NIPS)}, 2017.
\bibitem{Singh2019}
A. Singh, T. Jain, and S. Sukhbaatar,
\newblock ``Learning when to communicate at scale in multiagent cooperative and
competitive tasks,``
\newblock {\em In ICLR}, 2019.
\bibitem{AK2}
A. Mohammadi and K. N. Plataniotis,
\newblock ``Event-Based Estimation With Information-Based Triggering and Adaptive Update,"
\newblock {\em IEEE Transactions on Signal Processing}, vol. 65, no. 18, pp. 4924-4939, 15 Sept. 2017.
\bibitem{Zhang:2021}
K. Zhang, Z. Yang, and T. Bacsar,
\newblock ``Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms,"
\newblock {\em, https://arxiv.org/abs/1911.10635}, springer, 2021.
\bibitem{Hamadanian:2022}
P. Hamadanian, M. Schwarzkopf, S. Sen and M. Alizadeh,
\newblock ``reinforcement learning in time-varying systems: an empirical study,''
\newblock {\em arXiv:2201.05560v1}, 2201.05560v1, 2022.
\bibitem{Mordatch2018}
I. Mordatch, P. Abbeel,
\newblock ``Emergence of grounded compositional language in multi-agent populations.``
\newblock {\em Proc. AAAI Conference of Artificial Intelligence}, 2018.
\bibitem{Henderson:2017}
Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D.
\newblock Deep Reinforcement Learning that Matters. \emph{arXiv}
\newblock \textbf{2017},
arXiv:1709.06560.
\bibitem{Chan:2022}
S.C. Chan, S. Fishman, J. Canny, et al.,
\newblock ``Measuring the Reliability of Reinforcement Learning Algorithms,"
\newblock {\em International Conference on Learning Representations}, Addis Ababa, Ethiopia, 26--30 April, 2020.
% ############################################## End of Chapter 4###########################################################
\bibitem{HajiAkhondiICASSP2021}
Z. HajiAkhondi-Meybodi, M. S. Beni, A. Mohammadi and K. N. Plataniotis, \newblock``Bluetooth Low Energy and CNN-Based Angle of Arrival Localization in Presence of Rayleigh Fading," \newblock {\em IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP)}, 2021, pp. 7913-7917.
\bibitem{Hussain:2018}
S. R. Hussain, S. Mehnaz, S. Nirjon, and E. Bertino,
\newblock ``Secure seamless bluetooth low energy connection migration for unmodified iot devices,”
\newblock {\em IEEE Trans. Mob. Com.}, vol. 17, no. 4, pp. 927–944, 2018.
\bibitem{Wood:2014}
G. Wood,
\newblock ``Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum Project Yellow Paper, 2014.
\bibitem{Ferrag:2019}
M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras and H. Janicke,
\newblock ``Blockchain Technologies for the Internet of Things: Research Issues and Challenges,"
\newblock{ \em IEEE Internet of Things Journal}, vol. 6, no. 2, pp. 2188-2204, 2019.
\bibitem{Ganardi:2018}
M. Ganardi, D. Hucke, and M. Lohrey,
\newblock``Randomized sliding window algorithms for regular languages,"
\newblock {\em 45th International Colloquium on Automata, Languages, and Programming, ICALP}, 2018, Czech Republic, pages 127:1–127:13.
\bibitem{MicrosoftStride2021}
Microsoft,
\newblock ``The Stride Threat Model. [Online].
Available: https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20), 2021.
\bibitem{Huang:2018}
X. Huang, C. Xu, P. Wang, and H. Liu,
\newblock ``LNSC: A security model for electric vehicle and charging pile management based on blockchain ecosystem,"
\newblock{ \em IEEE Access}, vol. 6, pp. 13565–13574, 2018.
%[6]
\bibitem{Wang:2018}
J. Wang, \textit{et al.},
\newblock ``A blockchain based privacy-preserving incentive mechanism in crowdsensing applications,"
\newblock{ \em IEEE Access}, vol. 6, pp. 17545–17556, 2018.
%[7]
\bibitem{Lin:2018}
C. Lin, D. He, X. Huang, K.-K. R. Choo, and A. V. Vasilakos,
\newblock ``BSeIn: A blockchain-based secure mutual authentication with fine-grained access control system for industry 4.0,"
\newblock{ \em J. Netw. Comput. Appl.}, vol. 116, pp. 42–52, Aug. 2018.
\bibitem{Li:2018}
L. Li, \textit{et al.},
\newblock ``CreditCoin: A Privacy-Preserving Blockchain-Based Incentive Announcement Network for Communications of Smart Vehicles,"
\newblock{ \em IEEE Transactions on Intelligent Transportation Systems,}, vol. 19, no. 7, pp. 2204-2220, July 2018.
%[9]
\bibitem{Malik:2019}
S. Malik, V. Dedeoglu, S. S. Kanhere and R. Jurdak,
\newblock ``TrustChain: Trust Management in Blockchain and IoT Supported Supply Chains,"
\newblock{ \em IEEE International Conference on Blockchain}, 2019, pp. 184-193.
\bibitem{Ferrari2018}
P. Ferrari, A. Flammini, E. Sisinni, S. Rinaldi, D. Brandão and M. S. Rocha,
\newblock ``Delay Estimation of Industrial IoT Applications Based on Messaging Protocols,"
\newblock {\em IEEE Internet of Things Journal}, vol. 67, no. 9, pp. 2188-2199, Sept. 2018.
\bibitem{Pass:2017}
R. Pass, C. Tech, and L. Seeman,
\newblock ``Analysis of the Blockchain Protocol in Asynchronous Networks,"
\newblock {\em Annual International Conference on the Theory and Applications of Cryptographic Techniques}, Paris, France, May 2017, pp. 643-673.
\bibitem{Garay:2015}
J. Garay, A. Kiayias, N. Leonardos,
\newblock ``The bitcoin backbone protocol: analysis and applications,"
\newblock {\em Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS}, vol. 9057, pp. 281–310. Springer, Heidelberg 2015.
\bibitem{Miyachi:2021}
K. Miyachi and T. K. Mackey,
\newblock ``hOCBS: A privacy-preserving blockchain framework for healthcare data leveraging an on-chain and off-chain system design Author links open overlay panel,”
\newblock {\em Information Processing \& Management Journal}, vol. 58, no. 3, 2021, Art. no. 102535.
\bibitem{Zhou2018}
Q. Zhou, H. Huang, Z. Zheng and J. Bian,
\newblock ``Solutions to Scalability of Blockchain: A Survey,”
\newblock {\em IEEE Access}, vol. 8, pp. 16440-16455, 2020.
\bibitem{SegWit2015}
E. Lombrozo, J. Lau, and P. Wuille,
\newblock ``Segregated witness (consensuslayer),”
\newblock {\em Bitcoin Core Develop. Team}, Tech. Rep., 2015.
\bibitem{lightningnetwork2016}
J. Poon and D. Thaddeus,
\newblock ``The bitcoin lightning network: Scalable off-chain instant payments,”
\newblock 2016.
\bibitem{Norvill2018}
R. Norvill, B. B. Fiz Pontiveros, R. State and A. Cullen,
\newblock ``IPFS for Reduction of Chain Size in Ethereum,"
\newblock{ \em IEEE Int. Conf. on Internet of Things (iThings)}, 2018, pp. 1121-1128.
\bibitem{Delgado2019}
S. Delgado-Segura, C. Perez-Sola, G. Navarro-Arribas, and J. Herrera-Joancomarti,
\newblock ``Analysis of the Bitcoin UTXO Set,"
\newblock{ \em Financial Cryptography and Data Security}, Springer Berlin Heidelberg, 2019, pp. 78–91.
\bibitem{Stark2018}
J. Stark,
\newblock ``Making sense of ethereum’s layer 2 scaling solutions: state channels,Plasma, and truebit. Medium,"
\newblock February 2018, Available at: https://medium.com/l4-media/making-sense-of-ethereums-layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4.
\bibitem{P6}
H. Obeidat, W. Shuaieb, O. Obeidat, and R. Abd-Alhameed, \newblock``A Review of Indoor Localization Techniques and Wireless Technologies," \newblock {\em Wireless Personal Communications}, vol. 119, no. 1 pp. 289-327, 2021.
\bibitem{Yousefi2015}
S. Yousefi, X. Chang, and B. Champagne, \newblock ``Mobile Localization in Non-Line-of-Sight Using Constrained Square-Root Unscented Kalman Filter,"
\newblock{ \em IEEE Trans. Veh. Technol.}, vol. 64, no. 5, pp. 2071-2083, May 2015.
\bibitem{Stack_Exchange}
Available online: https://www.increasebroadbandspeed.co.uk/what-is-a-good-signal-level-or-signal-to-noise-ratio-snr-for-wi-fi(acc. on 21-05-25).
\bibitem{Vujicic:2018}
D. Vujicic, D. Jagodic, S. Randic,
\newblock ``Blockchain technology, bitcoin, and Ethereum: A brief overview,”
\newblock {\em Int. Symposium Inf.-Jah.}, 2018, pp. 1-6.
Repository Staff Only: item control page