Chevalier, Théo (2023) Investigating Vortex Ring Reconnection in Twin Parallel Pulsed Jets: Influence of Nozzle Spacing and Stroke Ratio. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
6MBChevalier_MASc_F2023.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
Even though interactions between pulsed jets showed great importance in biological fluid transport, they remain poorly described. An experimental piston/cylinder apparatus is designed to produce twin parallel pulsed jets. Using Particle Image Velocimetry (PIV), we investigate how vortex ring reconnection is influenced by nozzle spacings (S/D_0) varying from 1.49 and 3.20 and stroke ratios (L/D_0) between 2 and 4. Velocity and vorticity visualization suggest there is a critical spacing ratio from which the pulsed jets interact. This value is found to be approximately 3. Below 1.5, the vortex rings are already merged at the jet exit. By implementing a vortex core identification method based on the swirling strength criterion, the reconnection point is then localized. The results highlight how important is the effect of the nozzle spacing compared to the stroke ratio, although the influence of L/D_0 increases with the distance between the jets. Finally, time-frequency analyses confirm the highly fast changes in velocity and vorticity observed during reconnection, and emphasize the importance of the reconnection phase in the newly formed structure.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Chevalier, Théo |
Institution: | Concordia University |
Degree Name: | M.A. Sc. |
Program: | Mechanical Engineering |
Date: | 6 June 2023 |
Thesis Supervisor(s): | Kadem, Lyes and Ng, Hoi Dick |
Keywords: | Vortex rings, pulsed jets, stroke ratio, nozzle spacing, formation time |
ID Code: | 992421 |
Deposited By: | Théo Chevalier |
Deposited On: | 17 Nov 2023 14:27 |
Last Modified: | 17 Nov 2023 14:27 |
References:
[1] J. Mi, G. J. Nathan, and D. S. Nobes, “Mixing characteristics of axisymmetric free jets from a contoured nozzle, an orifice plate and a pipe,” Journal of Fluids Engineering, vol. 123, no. 4, pp. 878–883, Jun. 2001, doi: https://doi.org/10.1115/1.1412460.[2] P. E. Dimotakis, “The mixing transition in turbulent flows,” Journal of Fluid Mechanics, vol. 409, pp. 69–98, Apr. 2000, doi: https://doi.org/10.1017/s0022112099007946.
[3] Z. Yin, H. Zhang, and J. Lin, “Experimental study on the flow field characteristics in the mixing region of twin jets,” Journal of Hydrodynamics, vol. 19, no. 3, pp. 309–313, Jun. 2007, doi: https://doi.org/10.1016/s1001-6058(07)60063-8.
[4] A. Durve, A. W. Patwardhan, I. Banarjee, G. Padmakumar, and G. Vaidyanathan, “Numerical investigation of mixing in parallel jets,” Nuclear Engineering and Design, vol. 242, pp. 78–90, Jan. 2012, doi: https://doi.org/10.1016/j.nucengdes.2011.10.051.
[5] I. Zawadzki and H. Aref, “Mixing during vortex ring collision,” Physics of Fluids A: Fluid Dynamics, vol. 3, no. 5, pp. 1405–1410, May 1991, doi: https://doi.org/10.1063/1.858204.
[6] A. G. Athanassiadis and D. P. Hart, “Effects of multijet coupling on propulsive performance in underwater pulsed jets,” Physical Review Fluids, vol. 1, no. 3, Jul. 2016, doi: https://doi.org/10.1103/physrevfluids.1.034501.
[7] K. Knowles and A. J. Saddington, “A review of jet mixing enhancement for aircraft propulsion applications,” Journal of Aerospace Engineering, vol. 220, no. 2, pp. 103–127, Feb. 2006, doi: https://doi.org/10.1243/09544100g01605.
[8] Y. Luo, Q. Xiao, Q. Zhu, and G. Pan, “Pulsed-jet propulsion of a squid-inspired swimmer at high Reynolds number,” Physics of Fluids, vol. 32, no. 11, p. 111901, Nov. 2020, doi: https://doi.org/10.1063/5.0027992.
[9] I. K. Bartol, P. S. Krueger, W. J. Stewart, and J. T. Thompson, “Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers,” Journal of Experimental Biology, vol. 212, no. 10, pp. 1506–1518, May 2009, doi: https://doi.org/10.1242/jeb.026948.
[10] A. Kheradvar and M. Gharib, “On mitral valve dynamics and its connection to early diastolic flow,” Annals of Biomedical Engineering, vol. 37, no. 1, pp. 1–13, Nov. 2008, doi: https://doi.org/10.1007/s10439-008-9588-7.
[11] A. El Sabbagh, Y. N. V. Reddy, and R. A. Nishimura, “Mitral valve regurgitation in the contemporary era,” JACC: Cardiovascular Imaging, vol. 11, no. 4, pp. 628–643, Apr. 2018, doi: https://doi.org/10.1016/j.jcmg.2018.01.009.
[12] O. Smadi, I. Hassan, P. Pibarot, and L. Kadem, “Numerical and experimental investigations of pulsatile blood flow pattern through a dysfunctional mechanical heart valve,” Journal of Biomechanics, vol. 43, no. 8, pp. 1565–1572, May 2010, doi: https://doi.org/10.1016/j.jbiomech.2010.01.029.
[13] M. Gharib, E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri, “Optimal vortex formation as an index of cardiac health,” Proceedings of the National Academy of Sciences, vol. 103, no. 16, pp. 6305–6308, Apr. 2006, doi: https://doi.org/10.1073/pnas.0600520103.
[14] G. Di Labbio and L. Kadem, “Jet collisions and vortex reversal in the human left ventricle,” Journal of Biomechanics, vol. 78, pp. 155–160, Sep. 2018, doi: https://doi.org/10.1016/j.jbiomech.2018.07.023.
[15] M. Sargordi, A. Chtchetinina, G. Di Labbio, H. D. Ng, and L. Kadem, “Pulsatile twin parallel jets through a flexible orifice with application to edge-to-edge mitral valve repair,” Physics of Fluids, vol. 32, no. 12, pp. 121702–121702, Dec. 2020, doi: https://doi.org/10.1063/5.0025859.
[16] M. Qintar and A. K. Chhatriwalla, “Update on the current status and indications for transcatheter edge-to-edge mitral valve repair,” Current Cardiology Reports, vol. 22, no. 11, Sep. 2020, doi: https://doi.org/10.1007/s11886-020-01391-1.
[17] A. Chtchetinina, Experimental Investigation of Jets Through a Model Mitral Valve with Different Leaflet Suture Configurations, Master Thesis, Concordia University, Montréal, Canada, 2015.
[18] M. Sargordi, Flow Characteristics Downstream of Twin Pulsed Orifice Jets: Application to Mitral Valve Repair, Master Thesis, Concordia University, Montréal, Canada, 2020.
[19] K. Mohseni, “Pulsatile vortex generators for low-speed maneuvering of small underwater vehicles,” Ocean Engineering, vol. 33, no. 16, pp. 2209–2223, Nov. 2006, doi: https://doi.org/10.1016/j.oceaneng.2005.10.022.
[20] L. P. Madin, “Aspects of jet propulsion in salps,” Canadian Journal of Zoology, vol. 68, no. 4, pp. 765–777, Apr. 1990, doi: https://doi.org/10.1139/z90-111.
[21] Q. Bone and E. R. Trueman, “Jet propulsion in salps (Tunicata: Thaliacea),” Journal of Zoology, vol. 201, no. 4, pp. 481–506, Dec. 1983, doi: https://doi.org/10.1111/j.1469-7998.1983.tb05071.x.
[22] J. H. Costello, S. P. Colin, B. J. Gemmell, J. O. Dabiri, and K. R. Sutherland, “Multi-jet propulsion organized by clonal development in a colonial siphonophore,” Nature Communications, vol. 6, no. 1, p. 8158, Sep. 2015, doi: https://doi.org/10.1038/ncomms9158.
[23] “Siphonophorae,” Wikipedia, Apr. 07, 2023. https://fr.wikipedia.org/w/index.php?title=Siphonophorae&oldid=203040108 (accessed Jun. 02, 2023).
[24] M. I. Gurevich, The Theory of Jets in Ideal Fluids. Elsevier, 1965.
[25] Sergeĭ Alekseevich Chaplygin, Gas Jets. National Advisory Committee for Aeronautics, 1944.
[26] M. Kaushik, R. Kumar, and Humrutha G, “Review of computational fluid dynamics studies on jets,” American Journal of Fluid Dynamics, vol. 5, no. 3A, pp. 1–11, Jan. 2015.
[27] G. N. Abramovich, “General properties of turbulent jets,” in The Theory of Turbulent Jets, MIT Press, 1963, pp. 3–49.
[28] C. D. Richards and W. M. Pitts, “Global density effects on the self-preservation behaviour of turbulent free jets,” Journal of Fluid Mechanics, vol. 254, pp. 417–435, Sep. 1993, doi: https://doi.org/10.1017/s0022112093002204.
[29] G. F. Xu and R. A. Antonia, “Effect of different initial conditions on a turbulent round free jet,” Experiments in Fluids, vol. 33, no. 5, pp. 677–683, Nov. 2002, doi: https://doi.org/10.1007/s00348-002-0523-7.
[30] V. Todde, P. G. Spazzini, and M. Sandberg, “Experimental analysis of low-Reynolds number free jets,” Experiments in Fluids, vol. 47, no. 2, pp. 279–294, Apr. 2009, doi: https://doi.org/10.1007/s00348-009-0655-0.
[31] S. C. Crow and F. H. Champagne, “Orderly structure in jet turbulence,” Journal of Fluid Mechanics, vol. 48, no. 3, pp. 547–591, Aug. 1971, doi: https://doi.org/10.1017/S0022112071001745.
[32] S. J. Kwon and I. W. Seo, “Reynolds number effects on the behavior of a non-buoyant round jet,” Experiments in Fluids, vol. 38, no. 6, pp. 801–812, Apr. 2005, doi: https://doi.org/10.1007/s00348-005-0976-6.
[33] A. Abdel-Rahman, “A review of effects of initial and boundary conditions on turbulent jets,” WSEAS transactions on Fluid Mechanics, vol. 4, no. 5, pp. 257–275, 2010.
[34] N. Georgiadis and D. Papamoschou, “Computational investigations of high speed dual stream jets,” in 9th AIAA/CEAS Aeronautics Conference and Exhibit, Hilton Head, SC, May 2003, p. 3311.
[35] N. Rajaratnam and K. Subramanya, “Plane turbulent reattached wall jets,” Journal of the Hydraulics Division, vol. 94, no. 1, pp. 95–112, Jan. 1968, doi: https://doi.org/10.1061/jyceaj.0001771.
[36] J. Hoch and L. M. Jiji, “Two-dimensional turbulent offset jet-boundary interaction,” Journal of Fluids Engineering, vol. 103, no. 1, pp. 154–161, Mar. 1981, doi: https://doi.org/10.1115/1.3240766.
[37] C. Bourque and B. G. Newman, “Reattachment of a two-dimensional, incompressible jet to an adjacent flat plate,” The Aeronautical Quarterly, vol. 11, no. 3, pp. 201–232, Aug. 1960, doi: https://doi.org/10.1017/s0001925900001797.
[38] R. Pelfrey and J. A. Liburdy, “Mean flow characteristics of a turbulent offset jet,” Journal of Fluids Engineering, vol. 108, no. 1, pp. 82–88, Mar. 1986, doi: https://doi.org/10.1115/1.3242548.
[39] M. Agelin-Chaab and M. F. Tachie, “Characteristics of turbulent three-dimensional offset jets,” Journal of Fluids Engineering, vol. 133, no. 5, pp. 608-620, May 2011, doi: https://doi.org/10.1115/1.4004071.
[40] A. Assoudi, S. Habli, N. M. Saïd, H. Bournot, and G. Le Palec, “Experimental and numerical study of an offset jet with different velocity and offset ratios,” Engineering Applications of Computational Fluid Mechanics, vol. 9, no. 1, pp. 490–512, Jan. 2015, doi: https://doi.org/10.1080/19942060.2015.1071525.
[41] A. Assoudi, A. Amamou, N. M. Saïd, and H. Bournot, “Characteristics and analysis of a turbulent offset jet including the effect of density and offset height,” International Journal of Mechanical Sciences, vol. 174, pp. 105477–105477, May 2020, doi: https://doi.org/10.1016/j.ijmecsci.2020.105477.
[42] V. Parameswaran and S. A. Alpay, “Studies on re-attaching wall jets,” Transactions of the Canadian Society for Mechanical Engineering, vol. 3, no. 2, pp. 83–89, Jun. 1975, doi: https://doi.org/10.1139/tcsme-1975-0012.
[43] A. Nasr and J. C. S. Lai, “A turbulent plane offset jet with small offset ratio,” Experiments in Fluids, vol. 24, no. 1, pp. 47–57, Jan. 1998, doi: https://doi.org/10.1007/s003480050149.
[44] B. E. Launder and W. Rodi, “The turbulent wall jet measurements and modeling,” Annual Review of Fluid Mechanics, vol. 15, no. 1, pp. 429–459, Jan. 1983, doi: https://doi.org/10.1146/annurev.fl.15.010183.002241.
[45] A. Dejoan and M. A. Leschziner, “Large eddy simulation of a plane turbulent wall jet,” Physics of Fluids, vol. 17, no. 2, p. 025102, Feb. 2005, doi: https://doi.org/10.1063/1.1833413.
[46] W. K. George, H. Abrahamsson, J. Eriksson, R. I. Karlsson, L. Löfdahl, and M. Wosnik, “A similarity theory for the turbulent plane wall jet without external stream,” Journal of Fluid Mechanics, vol. 425, pp. 367–411, Dec. 2000, doi: https://doi.org/10.1017/s002211200000224x.
[47] J. G. Eriksson, R. I. Karlsson, and J. L. Persson, “An experimental study of a two-dimensional plane turbulent wall jet,” Experiments in Fluids, vol. 25, no. 1, pp. 50–60, Jun. 1998, doi: https://doi.org/10.1007/s003480050207.
[48] K. Zhou and Herlina, “An experimental study on turbulent circular wall jets,” Journal of Hydraulic Engineering, vol. 128, no. 2, pp. 161–174, Feb. 2002, doi: https://doi.org/10.1061/(asce)0733-9429(2002)128:2(161).
[49] H. A. Hussein, S. P. Capp, and W. H. George, “Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet,” Journal of Fluid Mechanics, vol. 258, pp. 31–75, Jan. 1994, doi: https://doi.org/10.1017/s002211209400323x.
[50] W. K. George, R. E. A. Arndt, and S. Corrsin, Advances in Turbulence. New York City: Hemisphere Pub. Corp, 1989.
[51] I. Wygnanski and H. Fiedler, “Some measurements in the self-preserving jet,” Journal of Fluid Mechanics, vol. 38, no. 3, pp. 577–612, Sep. 1969, doi: https://doi.org/10.1017/s0022112069000358.
[52] A. Agrawal and A. S. Prasad, “Properties of vortices in the self-similar turbulent jet,” Experiments in Fluids, vol. 33, no. 4, pp. 565–577, Oct. 2002, doi: https://doi.org/10.1007/s00348-002-0507-7.
[53] P. Burattini, R. A. Antonia, and S. Rajagopalan, “Effect of initial conditions on the far field of a round jet,” in 15th Australasian Fluid Mechanics Conference, Sydney, NSW, Australia, 2004.
[54] D. R. Dowling and P. E. Dimotakis, “Similarity of the concentration field of gas-phase turbulent jets,” Journal of Fluid Mechanics, vol. 218, no. -1, p. 109, Sep. 1990, doi: https://doi.org/10.1017/s0022112090000945.
[55] B. Liu, J. Mi, and G. J. Nathan, “The influence of nozzle aspect ratio on plane jets,” Experimental Thermal and Fluid Science, vol. 31, no. 8, pp. 825–838, Aug. 2007, doi: https://doi.org/10.1016/j.expthermflusci.2006.08.009.
[56] W. R. Quinn, “Experimental study of the near field and transition region of a free jet issuing from a sharp-edged elliptic orifice plate,” European Journal of Mechanics - B/Fluids, vol. 26, no. 4, pp. 583–614, Jul. 2007, doi: https://doi.org/10.1016/j.euromechflu.2006.10.005.
[57] E. Smith, G. J. Nathan, and B. B. Dally, “The ‘round jet inflow-condition anomaly’ for the k-ε turbulence model,” in 15th Australasian Fluid Mechanics Conference, Sydney, NSW, Australia, 2004.
[58] G. Lipari and P. K. Stansby, “Review of experimental data on incompressible turbulent round jets,” Flow, Turbulence and Combustion, vol. 87, no. 1, pp. 79–114, Mar. 2011, doi: https://doi.org/10.1007/s10494-011-9330-7.
[59] K. B. M. Q. Zaman, “Far-field noise of a subsonic jet under controlled excitation,” Journal of Fluid Mechanics, vol. 152, pp. 83–111, Mar. 1985, doi: https://doi.org/10.1017/s0022112085000581.
[60] J. Mi, M. Xu, and T. Zhou, “Reynolds number influence on statistical behaviors of turbulence in a circular free jet,” Physics of Fluids, vol. 25, no. 7, pp. 075101–075101, Jul. 2013, doi: https://doi.org/10.1063/1.4811403.
[61] I. Namer and M. V. Ötügen, “Velocity measurements in a plane turbulent air jet at moderate Reynolds numbers,” Experiments in Fluids, vol. 6, no. 6, pp. 387–399, Jan. 1988, doi: https://doi.org/10.1007/bf00196484.
[62] R. C. Deo, J. Mi, and G. J. Nathan, “The influence of Reynolds number on a plane jet,” Physics of Fluids, vol. 20, no. 7, pp. 075108–075108, Jul. 2008, doi: https://doi.org/10.1063/1.2959171.
[63] D. R. Miller and E. W. Comings, “Force-momentum fields in a dual-jet flow,” Journal of Fluid Mechanics, vol. 7, no. 2, pp. 237–256, Feb. 1960, doi: https://doi.org/10.1017/S0022112060001468.
[64] E. Tanaka, “The interference of two-dimensional parallel jets : 1st report, experiments on dual jet,” Bulletin of JSME, vol. 13, no. 56, pp. 272–280, Jan. 1969, doi: https://doi.org/10.1299/jsme1958.13.272.
[65] E. Tanaka, “The interference of two-dimensional parallel jets : 2nd report, experiments on the combined flow of dual jet,” Bulletin of JSME, vol. 17, no. 109, pp. 920–927, Jul. 1974, doi: https://doi.org/10.1299/jsme1958.17.920.
[66] K. Murai, M. Taga, and K. Akagawa, “An experimental study on confluence of two two-dimensional jets,” Bulletin of JSME, vol. 19, no. 134, pp. 958–964, 1976, doi: https://doi.org/10.1299/jsme1958.19.958.
[67] T. L. Lim and T. B. Nickels, “Vortex rings,” Fluid Vortices, vol. 30, pp. 95–153, Jan. 1995, doi: https://doi.org/10.1007/978-94-011-0249-0_4.
[68] N. Fujisawa, K. Nakamura, and K. Srinivas, “Interaction of two parallel plane jets of different velocities,” Journal of visualization, vol. 7, no. 2, pp. 135–142, Apr. 2004, doi: https://doi.org/10.1007/bf03181586.
[69] A. Vouros and Th. Panidis, “Influence of a secondary, parallel, low Reynolds number, round jet on a turbulent axisymmetric jet,” Experimental Thermal and Fluid Science, vol. 32, no. 8, pp. 1455–1467, Sep. 2008, doi: https://doi.org/10.1016/j.expthermflusci.2008.03.007.
[70] X. K. Wang and S. K. Tan, “Experimental investigation of the interaction between a plane wall jet and a parallel offset jet,” Experiments in Fluids, vol. 42, no. 4, pp. 551–562, Feb. 2007, doi: https://doi.org/10.1007/s00348-007-0263-9.
[71] A. Kumar and M. K. Das, “Study of a turbulent dual jet consisting of a wall jet and an offset jet,” Journal of Fluids Engineering, vol. 133, no. 10, pp. 201-2011, Sep. 2011, doi: https://doi.org/10.1115/1.4004823.
[72] H. Wang, S. Lee, and Y. A. Hassan, “Particle image velocimetry measurements of the flow in the converging region of two parallel jets,” Nuclear Engineering and Design, vol. 306, pp. 89–97, Sep. 2016, doi: https://doi.org/10.1016/j.nucengdes.2015.09.032.
[73] H. Elbanna, S. Gahin, and I. Rashed, “Investigation of two plane parallel jets,” AIAA Journal, vol. 21, no. 7, pp. 986–991, Jul. 1983, doi: https://doi.org/10.2514/3.8187.
[74] S. Deng and M. J. Sheu, “Interaction of parallel turbulent plane jets,” AIAA Journal, vol. 29, no. 9, pp. 1372–1373, Sep. 1991, doi: https://doi.org/10.2514/3.10749.
[75] M. Ko and K. Y. Lau, “Flow structures in initial region of two interacting parallel plane jets,” Experimental Thermal and Fluid Science, vol. 2, no. 4, pp. 431–449, Oct. 1989, doi: https://doi.org/10.1016/0894-1777(89)90006-x.
[76] G. Marsters, “Interaction of two plane, parallel jets,” AIAA Journal, vol. 15, no. 12, pp. 1756–1762, Dec. 1977, doi: https://doi.org/10.2514/3.60841.
[77] S. Zeierman, E. Gutmark, and N. Nosseir, “Characteristics of two adjacent rectangular jets,” in 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 1992, p.237.
[78] I. Moustafa, “Experimental investigation of high-speed twin jets,” AIAA Journal, vol. 32, no. 11, pp. 2320–2322, Nov. 1994, doi: https://doi.org/10.2514/3.12293.
[79] T Harima, S. Fujita, and H. Osaka, “Turbulent properties of twin circular free jets with various nozzle spacing,” Engineering Turbulence Modelling and Experiments 6, pp. 501–510, Jan. 2005, doi: https://doi.org/10.1016/b978-008044544-1/50048-0.
[80] B. Zang and T. H. New, “On the wake-like vortical arrangement and behaviour associated with twin jets in close proximity,” Experimental Thermal and Fluid Science, vol. 69, pp. 127–140, Dec. 2015, doi: https://doi.org/10.1016/j.expthermflusci.2015.08.004.
[81] H. Helmholtz, “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen.,” Journal für die reine und angewandte Mathematik, vol. 1858, no. 55, pp. 25–55, Jan. 1858, doi: https://doi.org/10.1515/crll.1858.55.25.
[82] W. B. Rogers, “On the formation of rotating rings by air and liquids under certain conditions of discharge,” American Journal of Science, vol. 26, pp. 246–258, 1858.
[83] E. Reusch, “Ueber Ringbildung in Flüssigkeiten,” Annalen der Physik, vol. 186, no. 6, pp. 309–316, Jan. 1860, doi: https://doi.org/10.1002/andp.18601860611.
[84] V. V. Meleshko and H. Aref, “A Bibliography of Vortex Dynamics 1858–1956,” Advances in Applied Mechanics, vol. 41, pp. 197–292, Jan. 2007, doi: https://doi.org/10.1016/s0065-2156(07)41003-1.
[85] V. V. Meleshko, A. A. Gourjii, and T. S. Krasnopolskaya, “Vortex rings: history and state of the art,” Journal of Mathematical Sciences, vol. 187, no. 6, pp. 772–808, Nov. 2012, doi: https://doi.org/10.1007/s10958-012-1100-0.
[86] P. G. Saffman, Vortex Dynamics. Cambridge ; New York: Cambridge University Press, 1995.
[87] M. Shusser and M. Gharib, “Energy and velocity of a forming vortex ring,” Physics of Fluids, vol. 12, no. 3, pp. 618–621, Feb. 2000, doi: https://doi.org/10.1063/1.870268.
[88] D. T. New and S. C. H. Yu, Vortex rings and jets: recent developments in near-field dynamics. Singapore: Springer, 2015. doi: https://doi.org/10.1007/978-981-287-396-5.
[89] N. Didden, “On the formation of vortex rings: Rolling-up and production of circulation,” Zeitschrift für angewandte Mathematik und Physik ZAMP, vol. 30, no. 1, pp. 101–116, Jan. 1979, doi: https://doi.org/10.1007/bf01597484.
[90] M. Gharib, E. Rambod, and K. Shariff, “A universal time scale for vortex ring formation,” Journal of Fluid Mechanics, vol. 360, pp. 121–140, Apr. 1998.
[91] M. Rosenfeld, E. Rambod, and M. Gharib, “Circulation and formation number of laminar vortex rings,” Journal of Fluid Mechanics, vol. 376, pp. 297–318, Dec. 1998, doi: https://doi.org/10.1017/s0022112098003115.
[92] W. Zhao, S. H. Frankel, and L. G. Mongeau, “Effects of trailing jet instability on vortex ring formation,” Physics of Fluids, vol. 12, no. 3, pp. 589–596, Mar. 2000, doi: https://doi.org/10.1063/1.870264.
[93] K. Mohseni, H. Ran, and T. Colonius, “Numerical experiments on vortex ring formation,” Journal of Fluid Mechanics, vol. 430, pp. 267–282, Mar. 2001, doi: https://doi.org/10.1017/s0022112000003025.
[94] D. E. Auerbach, “Stirring properties of vortex rings,” Physics of Fluids A: Fluid Dynamics, vol. 3, no. 5, pp. 1351–1355, May 1991, doi: https://doi.org/10.1063/1.858064.
[95] D. Auerbach, “Some open questions on the flow of circular vortex rings,” Fluid Dynamics Research, vol. 3, no. 1–4, pp. 209–213, Sep. 1988, doi: https://doi.org/10.1016/0169-5983(88)90067-6.
[96] K. Mohseni and M. Gharib, “A model for universal time scale of vortex ring formation,” Physics of Fluids, vol. 10, no. 10, pp. 2436–2438, Oct. 1998, doi: https://doi.org/10.1063/1.869785.
[97] O. Pierrakos and P. P. Vlachos, “The effect of vortex formation on left ventricular filling and mitral valve efficiency,” Journal of Biomechanical Engineering, vol. 128, no. 4, pp. 527–539, Aug. 2006, doi: https://doi.org/10.1115/1.2205863.
[98] J. Töger et al., “Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and lagrangian coherent structures,” Annals of biomedical engineering, vol. 40, no. 12, pp. 2652–2662, Jul. 2012, doi: https://doi.org/10.1007/s10439-012-0615-3.
[99] K. Zhang and D. E. Rival, “On the dynamics of unconfined and confined vortex rings in dense suspensions,” Journal of Fluid Mechanics, vol. 902, p. A6, Nov. 2020, doi: https://doi.org/10.1017/jfm.2020.522.
[100] M. Cheng, J. Lou, and T. T. Lim, “Leapfrogging of multiple coaxial viscous vortex rings,” Physics of Fluids, vol. 27, no. 3, p. 031702, Mar. 2015, doi: https://doi.org/10.1063/1.4915890.
[101] N. Riley and D. P. Stevens, “A note on leapfrogging vortex rings,” Fluid Dynamics Research, vol. 11, no. 5, pp. 235–244, May 1993, doi: https://doi.org/10.1016/0169-5983(93)90114-p.
[102] A. J. Niemi, “Exotic statistics of leapfrogging vortex rings,” Physical Review Letters, vol. 94, no. 12, Apr. 2005, doi: https://doi.org/10.1103/physrevlett.94.124502.
[103] K. Shariff and A. Leonard, “Vortex rings,” Annual Review of Fluid Mechanics, vol. 24, no. 1, pp. 235–279, Jan. 1992, doi: https://doi.org/10.1146/annurev.fl.24.010192.001315.
[104] T. Fohl and J. S. Turner, “Colliding vortex rings,” Physics of Fluids, vol. 18, no. 4, p. 433, 1975, doi: https://doi.org/10.1063/1.861169.
[105] S. Kida, M. Takaoka, and F. Hussain, “Collision of two vortex rings,” Journal of Fluid Mechanics, vol. 230, pp. 583–646, Sep. 1991, doi: https://doi.org/10.1017/s0022112091000903.
[106] T. L. Lim and T. B. Nickels, “Instability and reconnection in the head-on collision of two vortex rings,” Nature, vol. 357, no. 6375, pp. 225–227, Sep. 1992, doi: https://doi.org/10.1038/357225a0.
[107] J. R. Mansfield, I. Hoteit, and C. Meneveau, “Dynamic LES of colliding vortex rings using a 3D vortex method,” Journal of Computational Physics, vol. 152, no. 1, pp. 305–345, Jun. 1999, doi: https://doi.org/10.1006/jcph.1999.6258.
[108] Y. Oshima, “Head-on collision of two vortex rings,” Journal of the Physical Society of Japan, vol. 44, no. 1, pp. 328–331, Jan. 1978, doi: https://doi.org/10.1143/jpsj.44.328.
[109] S. C. Crow, “Stability theory for a pair of trailing vortices,” AIAA Journal, vol. 8, no. 12, pp. 2172–2179, Dec. 1970, doi: https://doi.org/10.2514/3.6083.
[110] W. T. Ashurst and D. I. Meiron, “Numerical study of vortex reconnection,” Physical Review Letters, vol. 58, no. 16, pp. 1632–1635, Apr. 1987, doi: https://doi.org/10.1103/physrevlett.58.1632.
[111] S. Kida, M. Takaoka, and F. Hussain, “Reconnection of two vortex rings,” Physics of Fluids A: Fluid Dynamics, vol. 1, no. 4, pp. 630–632, Apr. 1989, doi: https://doi.org/10.1063/1.857436.
[112] H. Aref and I. Zawadzki, “Linking of vortex rings,” Nature, vol. 354, no. 6348, pp. 50–53, Nov. 1991, doi: https://doi.org/10.1038/354050a0.
[113] S. Kida and M. Takaoka, “Vortex reconnection,” Annual Review of Fluid Mechanics, vol. 26, no. 1, pp. 169–177, Jan. 1994, doi: https://doi.org/10.1146/annurev.fl.26.010194.001125.
[114] I. D. Sullivan, J. Niemela, R. E. Hershberger, D. Bolster, and R. J. Donnelly, “Dynamics of thin vortex rings,” Journal of Fluid Mechanics, vol. 609, pp. 319–347, Aug. 2008, doi: https://doi.org/10.1017/s0022112008002292.
[115] P. S. Krueger and M. Gharib, “The significance of vortex ring formation to the impulse and thrust of a starting jet,” Physics of Fluids, vol. 15, no. 5, pp. 1271–1281, Apr. 2003, doi: https://doi.org/10.1063/1.1564600.
[116] J. J. Allen and B. Auvity, “Interaction of a vortex ring with a piston vortex,” Journal of Fluid Mechanics, vol. 465, pp. 353–378, Aug. 2002, doi: https://doi.org/10.1017/S0022112002001118.
[117] “Particle Image Velocimetry (PIV),” Dantec Dynamics, 2019. https://www.dantecdynamics.com/wp-content/uploads/2019/11/particle-image-velocimetry-poster-1.pdf
[118] R. D. Keane and R. J. Adrian, “Optimization of particle image velocimeters: II. Multiple pulsed systems,” Measurement Science and Technology, vol. 2, no. 10, pp. 963–974, Oct. 1991, doi: https://doi.org/10.1088/0957-0233/2/10/013.
[119] R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Applied Scientific Research, vol. 49, no. 3, pp. 191–215, Jul. 1992, doi: https://doi.org/10.1007/bf00384623.
[120] R. J. Keane and R. J. Adrian, “Optimization of particle image velocimeters. I. Double pulsed systems,” Measurement Science and Technology, vol. 1, no. 11, pp. 1202–1215, Nov. 1990, doi: https://doi.org/10.1088/0957-0233/1/11/013.
[121] R. J. Adrian, J. Westerweel, and Cambridge University Press, Particle image velocimetry. Cambridge: Cambridge University Press, Cop, 2011.
[122] A. Fincham and G. Delerce, “Advanced optimization of correlation imaging velocimetry algorithms,” Experiments in Fluids, vol. 29, no. 7, pp. S013–S022, Dec. 2000, doi: https://doi.org/10.1007/s003480070003.
[123] F. Scarano and M. L. Riethmuller, “Advances in iterative multigrid PIV image processing,” Experiments in Fluids, vol. 29, no. 7, pp. S051–S060, Dec. 2000, doi: https://doi.org/10.1007/s003480070007.
[124] A. Melling, “Tracer particles and seeding for particle image velocimetry,” Measurement Science and Technology, vol. 8, no. 12, pp. 1406–1416, Dec. 1997, doi: https://doi.org/10.1088/0957-0233/8/12/005.
[125] J. Westerweel, “Analysis of PIV interrogation with low-pixel resolution,” Optical Diagnostics in Fluid and Thermal Flow, pp. 624–635, Dec. 1993, doi: https://doi.org/10.1117/12.163745.
[126] J. Westerweel, “Efficient detection of spurious vectors in particle image velocimetry data,” Experiments in Fluids, vol. 16–16, no. 3–4, pp. 236–247, Feb. 1994, doi: https://doi.org/10.1007/bf00206543.
[127] J. Westerweel and F. Scarano, “Universal outlier detection for PIV data,” Experiments in Fluids, vol. 39, no. 6, pp. 1096–1100, Aug. 2005, doi: https://doi.org/10.1007/s00348-005-0016-6.
[128] J. Duncan, D. Dabiri, J. Hove, and M. Gharib, “Universal outlier detection for particle image velocimetry (PIV) and particle tracking velocimetry (PTV) data,” Measurement Science and Technology, vol. 21, no. 5, p. 057002, Mar. 2010, doi: https://doi.org/10.1088/0957-0233/21/5/057002.
[129] V. Holmen, “Methods for vortex identification,” Master’s Theses in Mathematical Sciences, 2012.
[130] B. Epps, “Review of vortex identification methods,” in 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, Jan. 2017.
[131] P. Chakraborty, S. Balachandar, and R. J. Adrian, “On the relationships between local vortex identification schemes,” Journal of Fluid Mechanics, vol. 535, pp. 189–214, Jul. 2005, doi: https://doi.org/10.1017/s0022112005004726.
[132] Y. Wu and K. T. Christensen, “Population trends of spanwise vortices in wall turbulence,” Journal of Fluid Mechanics, vol. 568, pp. 55–55, Dec. 2006, doi: https://doi.org/10.1017/s002211200600259x.
[133] Q. Chen, Q. Zhong, X. Wang, and D. Li, “An improved swirling-strength criterion for identifying spanwise vortices in wall turbulence,” Journal of Turbulence, vol. 15, no. 2, pp. 71–87, Feb. 2014, doi: https://doi.org/10.1080/14685248.2014.881488.
[134] R. Camussi, “Coherent structure identification from wavelet analysis of particle image velocimetry data,” Experiments in Fluids, vol. 32, no. 1, pp. 76–86, Jan. 2002, doi: https://doi.org/10.1007/s003480200008.
[135] A. Rinoshika and H. Rinoshika, “Application of multi-dimensional wavelet transform to fluid mechanics,” Theoretical and Applied Mechanics Letters, vol. 10, no. 2, pp. 98–115, Jan. 2020, doi: https://doi.org/10.1016/j.taml.2020.01.017.
[136] S. Sadeqi, N. Xiros, S. Rouhi, J. Ioup, J. Van Zwieten, and C. Sultan, “Wavelet transformation analysis applied to incompressible flow field about a solid cylinder,” in Proceesing of 5-6th Thermal and Fluids Engineering Conference (TFEC), New Orleans, LA, 2021, pp. 353–363.
[137] M. van Berkel, G. Witvoet, P. Nuij, and M. Steinbuch, Wavelets for feature detection : theoretical background, Eindhoven (Netherlands): CST, 2010.
Repository Staff Only: item control page