Login | Register

Velocity-Dependent Milli-Magnetic Dark Abelian Monopoles

Title:

Velocity-Dependent Milli-Magnetic Dark Abelian Monopoles

Umbach, Tyrell Edward (2024) Velocity-Dependent Milli-Magnetic Dark Abelian Monopoles. Masters thesis, Concordia University.

[thumbnail of Umbach_MSc_S2024.pdf]
Text (application/pdf)
Umbach_MSc_S2024.pdf - Accepted Version
Restricted to Registered users only until 11 April 2026.
Available under License Spectrum Terms of Access.
4MB

Abstract

Magnetic Monopoles, as proposed by Dirac, can be used to resolve the quantisation of Electromagnetism, however the problem remains elusive to this day as no experimental evidence for their existence has yet been found. The scope of this thesis is to demonstrate a model of Milli-Magenetically Charged Dark Matter which mixes the visible Abelian Electromagnetic gauge field with the Dark sector. Our formalism involves a velocity- dependent coupling which relativistically depends upon the monopole mass, for which we evaluate the production cross section of proton-proton collisions. Our work focuses on the efforts to observe this particle as part of the MoEDAL-MAPP experiment at the LHC.

Divisions:Concordia University > Faculty of Arts and Science > Physics
Item Type:Thesis (Masters)
Authors:Umbach, Tyrell Edward
Institution:Concordia University
Degree Name:M. Sc.
Program:Physics
Date:11 April 2024
Thesis Supervisor(s):Frank, Mariana
Keywords:high energy physics, magnetic monopoles, dirac quantisation, lhc, dark matter, moedal, mapp, detection, velocity dependent coupling, relativity, quantum electrodynamics, electromagnetodynamics, fundamental physics, phenomenology
ID Code:993761
Deposited By: Tyrell Edward Umbach
Deposited On:05 Jun 2024 16:46
Last Modified:05 Jun 2024 16:46

References:

[1] A. Hook and J. Huang, “Bounding millimagnetically charged particles with magnetars,” Physical Review D, vol. 96, no. 5, 2017.
[2] J. Terning and C. B. Verhaaren, “Dark monopoles and SL(2, Z) duality,” Journal of High Energy Physics, vol. 2018, no. 12, 2018.
[3] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, “Feynrules 2.0 — a complete toolbox for tree-level phenomenology,” Computer Physics Communications, vol. 185, p. 2250–2300, Aug. 2014.
[4] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” Journal of High Energy Physics, vol. 2014, July 2014.
[5] S. Aoki, H. Fukaya, N. Kan, M. Koshino, and Y. Matsuki, “Magnetic monopole becomes dyon in topological insulators,” Phys. Rev. B, vol. 108, p. 155104, Oct 2023.
[6] H. Weisbrich, M. Bestler, and W. Belzig, “Tensor Monopoles in superconducting systems,” Quantum, vol. 5, p. 601, Dec. 2021.
[7] S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity. Cambridge University Press, 2004.
[8] F. Gubarev, M. Polikarpov, and V. Zakharov, “Monopole-antimonopole interaction in Abelian Higgs model,” Physics Letters B, vol. 438, p. 147–153, Oct 1998.
[9] H. Beauchesne, “Mirror neutrons as dark matter in the mirror twin two higgs doublet model,” Journal of High Energy Physics, vol. 2020, Sep 2020.
[10] G. W. Angus and S. S. McGaugh, “The collision velocity of the bullet cluster in conventional and modified dynamics,” Monthly Notices of the Royal Astronomical Society, vol. 383, p. 417–423, Dec 2007.
[11] A. Robertson, R. Massey, and V. Eke, “What does the bullet cluster tell us about self- interacting dark matter?,” Monthly Notices of the Royal Astronomical Society, vol. 465, p. 569–587, Oct 2016.
[12] A. Haas, C. S. Hill, E. Izaguirre, and I. Yavin, “Looking for milli-charged particles with a new experiment at the LHC,” Physics Letters B, vol. 746, p. 117–120, Jun 2015.
[13] M. L. Graesser, I. M. Shoemaker, and N. T. Arellano, “Milli–Magnetic Monopole Dark Matter and the Survival of Galactic Magnetic Fields,” Journal of High Energy Physics, vol. 2022, Mar 2022.
[14] D. T. Binh, V. H. Binh, and H. N. Long, “Bounds on Dipole Moments of hidden Dark Matter through kinetic mixing,” 6 2020.
[15] M. Collaboration, “Magnetic Monopole Search with the Full MOEDAL Trapping detector in 13 TEV pp Collisions Interpreted in Photon–Fusion and Drell–Yan Production,” Physical Review Letters, vol. 123, no. 2, 2019.
[16] S. Baines, N. E. Mavromatos, V. A. Mitsou, J. L. Pinfold, and A. Santra, “Monopole production via photon fusion and Drell–Yan Processes: MadGraph implementation and perturbativity via velocity–dependent coupling and magnetic moment as novel features,” The European Physical Journal C, vol. 78, no. 11, 2018.
[17] S. Baines, “Effective field theory treatment of monopole production by Drell–Yan and photon fusion for various spins,” The 7th International Conference on New Frontiers in Physics, 2019.
[18] J. D. Jackson, Classical Electrodynamics. Wiley, 1998.
[19] P. Goddard and D. I. Olive, “Magnetic monopoles in gauge field theories,” Reports on
Progress in Physics, vol. 41, no. 9, p. 1357–1437, 1978.
[20] J. M. Charap, Covariant Electrodynamics: A Concise Guide. Johns Hopkins University
Press, 2011.
[21] Y. Yang, Solitons in Field Theory and Nonlinear Analysis. Springer, 2001.
[22] Y. M. Shnir, Magnetic Monopoles. Text and Monographs in Physics, Springer, 2005.
[23] L. Álvarez–Gaumé and F. Zamora, “Duality in Quantum Field Theory (and String Theory),” AIP Conference Proceedings, 1998.
[24] C. K. M. M., Dualities, Helicity Amplitudes, and Little Conformal Symmetry. Springer International Publishing, 2017.
[25] P. A. M. Dirac, “Quantised Singularities in the Electromagnetic Field,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 133, no. 821, pp. 60–72, 1931.
[26] P. A. M. Dirac, “The theory of Magnetic Poles,” Physical Review, vol. 74, p. 817–830, Oct 1948.
[27] M. Blagojević and P. Senjanović, “The quantum field theory of electric and magnetic charge,” Physics Reports, vol. 157, p. 233–346, Jan 1988.
[28] J. Schwinger, “Magnetic Charge and Quantum Field Theory,” Physical Review, vol. 144, p. 1087–1093, Apr 1966.
[29] T. E. Umbach, “John the Fisherman: Hook and Terning in the Same Boat.” 15th MoEDAL Collaboration Meeting, 2021.
[30] D. Zwanziger, “Quantum Field Theory of Particles with Both Electric and Magnetic Charges,” Physical Review, vol. 176, p. 1489–1495, Dec 1968.
[31] K. Colwell and J. Terning, “S-duality and helicity amplitudes,” Journal of High Energy Physics, vol. 68, Mar 2016.
[32] D. Zwanziger, “Local-Lagrangian Quantum Field Theory of Electric and Magnetic Charges,” Physical Review D, vol. 3, p. 880–891, Feb 1971.
[33] V. Vento and M. Traini, “Scattering of charged particles off monopole–anti-monopole pairs,” The European Physical Journal C, vol. 80, Jan 2020.
[34] J. Terning and C. B. Verhaaren, “Detecting dark matter with Aharonov-Bohm,” Journal of High Energy Physics, vol. 2019, Dec 2019.
[35] J. Terning and C. B. Verhaaren, “Resolving the Weinberg paradox with topology,” Journal of High Energy Physics, vol. 2019, no. 3, 2019.
[36] J. Terning and C. B. Verhaaren, “Spurious Poles in the Scattering of Electric and Magnetic Charges,” Journal of High Energy Physics, vol. 2020, no. 12, 2020.
[37] A. Santra, “Updatedmadgraphmodels.” https://github.com/asantra/ UpdatedMadGraphModels/, 2018.
[38] A. Manohar, P. Nason, G. P. Salam, and G. Zanderighi, “How bright is the proton? a precise determination of the photon parton distribution function,” Physical Review Letters, vol. 117, Dec. 2016.
[39] A. V. Manohar, P. Nason, G. P. Salam, and G. Zanderighi, “The photon content of the proton,” Journal of High Energy Physics, vol. 2017, Dec. 2017.
[40] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. Wellisch, T. Wenaus, D. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, “Geant4—a simulation toolkit,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 506, pp. 250–303, Sep 2003.
[41] H. Bethe, “Bremsformel für elektronen relativistischer geschwindigkeit,” Zeitschrift für Physik, vol. 76, p. 293–299, May 1932.
[42] F. Salvat, “Bethe stopping-power formula and its corrections,” Physical Review A, vol. 106, Sep 2022.
[43] S. P. Ahlen and K. Kinoshita, “Calculation of the stopping power of very-low-velocity magnetic monopoles,” Physical Review D, vol. 26, p. 2347–2363, Nov 1982.
[44] S. Coleman, “The magnetic monopole fifty years later,” The Unity of the Fundamental Interactions, p. 21–117, 1983.
[45] P. Scott, Searches for particle dark matter: Dark stars, dark galaxies, dark halos and global supersymmetric fits. Universitetsservices US-AB, 2010.
[46] K. M. Ellis, “Magnetic Monopoles: Quantization and Quasiparticles,” 2013.
[47] T.-M. Yan, “Magnetic Charge and General Relativity,” Physical Review, vol. 155, p. 1423–1427, Mar 1967.
[48] E. Witten, “On S-duality in Abelian Gauge Theory,” Selecta Mathematica, vol. 1, p. 383–410, Sep 1995.
[49] V. M. Villalba, “Exact solution of the Dirac equation for a Coulomb and scalar potential in the presence of an Aharonov–Bohm and a magnetic monopole fields,” Journal of Mathematical Physics, vol. 36, p. 3332–3344, Jul 1995.
[50] L. I. Schiff, “Quarks and magnetic poles,” Physical Review, vol. 160, p. 1257–1262, Aug 1967.
[51] R. P. dos Santos, “Magnetic monopoles and Dyons Revisited: A useful contribution to the study of Classical Mechanics,” European Journal of Physics, vol. 36, p. 035022, Mar 2015.
[52] J. M. Rana, H. C. Chandola, and B. S. Rajput, “Quark confinement through Dyonic Condensation,” Progress of Theoretical Physics, vol. 82, p. 153–161, Jul 1989.
[53] T. Gherghetta, J. Kersten, K. Olive, and M. Pospelov, “Evaluating the price of tiny kinetic mixing,” Physical Review D, vol. 100, Nov. 2019.
[54] H. An, M. Pospelov, and J. Pradler, “Observing dark photon with dark matter detectors,” 2014.
[55] H. Osborn, “Electric dipole moment for supersymmetric monopoles,” Physics Letters B, vol. 115, p. 226–228, Sep 1982.
[56] L. Gamberg and K. A. Milton, “Dual Quantum Electrodynamics: Dyon-Dyon and Charge-Monopole Scattering in a High-Energy Approximation,” Physical Review D, vol. 61, Mar 2000.
[57] M. S. Turner, E. N. Parker, and T. J. Bogdan, “Magnetic monopoles and the survival of Galactic Magnetic Fields,” Physical Review D, vol. 26, p. 1296–1305, Sep 1982.
[58] G. Magill, R. Plestid, M. Pospelov, and Y.-D. Tsai, “Millicharged Particles in Neutrino Experiments,” Physical Review Letters, vol. 122, Feb 2019.
[59] E. N. Parker, “The origin of Magnetic Fields,” The Astrophysical Journal, vol. 160, p. 383, May 1970.
[60] A. Berlin, N. Blinov, G. Krnjaic, P. Schuster, and N. Toro, “Dark Matter, Millicharges, Axion and Scalar Particles, Gauge Bosons, and Other New Physics with LDMX,” Physical Review D, vol. 99, Apr 2019.
[61] K. Kadota, T. Sekiguchi, and H. Tashiro, “A new constraint on millicharged dark matter from galaxy clusters,” 2016.
[62] O. Lebedev, “A finite-size magnetic monopole in double-potential formalism,” Modern Physics Letters A, vol. 12, p. 2203–2211, Sep 1997.
[63] L. V. Laperashvili and H. B. Nielsen, “Dirac Relation and Renormalization Group Equations for Electric and Magnetic Fine Structure Constants,” Modern Physics Letters A, vol. 14, p. 2797–2811, Dec 1999.
[64] N. J. Hitchin, “Monopoles and Geodesies,” Commun. Math. Phys., vol. 83, p. 579–602, 1982.
[65] G. Giacomelli and L. Patrizii, “Magnetic monopoles,” Cosmic Radiations: From Astronomy to Particle Physics, p. 73–88, 2001.
[66] J. Figueroa-O’Farrill, “Electromagnetic Duality for Children,” Oct 1998.
[67] J. Ellis, P. Hung, and N. E. Mavromatos, “An electroweak monopole, Dirac quantization and the weak mixing angle,” Nuclear Physics B, vol. 969, p. 115468, Aug 2021.
[68] H. Davoudiasl, “Implications of a running dark photon coupling,” 2015.
[69] S. Coleman, S. Parke, A. Neveu, and C. M. Sommerfield, “Can one dent a dyon?,”
Physical Review D, vol. 15, p. 544–545, Jan 1977.
[70] C. Montonen and D. Olive, “Magnetic monopoles as gauge particles?,” Physics Letters
B, vol. 72, p. 117–120, Dec 1977.
[71] L. Chetouani, L. Guechi, and T. F. Hammann, “Exact path integral solution of the Coulomb plus Aharonov–Bohm potential,” Journal of Mathematical Physics, vol. 30, p. 655–658, Mar 1989.
[72] E. B. Bogomol’nyi, “The stability of classical solutions,” Sov. J. Nucl. Phys. (Engl. Transl.); (United States), vol. 24:4, 10 1976.
[73] A. P. Balachandran, H. Rupertsberger, and J. Schechter, “Monopole theories with massless and Massive Gauge Fields,” Physical Review D, vol. 11, p. 2260–2271, Apr 1975.
[74] X. Artru, “Monopoles, duality, triality,” Nuclear Physics B, vol. 129, p. 415–428, Oct 1977.
[75] X. Artru and D. Fayolle, “Dynamics of a magnetic monopole in matter, maxwell equations in dyonic matter and detection of electric dipole moments,” 2002.
[76] C. Csáki, Y. Shirman, and J. Terning, “Anomaly constraints on monopoles and dyons,” Physical Review D, vol. 81, Jun 2010.
[77] F. Brümmer and J. Jaeckel, “Minicharges and magnetic monopoles,” Physics Letters B, vol. 675, p. 360–364, May 2009.
[78] F. Brümmer, J. Jaeckel, and V. V. Khoze, “Magnetic mixing — electric minicharges from magnetic monopoles,” Journal of High Energy Physics, vol. 2009, p. 037–037, Jun 2009.
[79] R. A. Brandt, F. Neri, and D. Zwanziger, “Lorentz Invariance of the Quantum Field Theory of Electric and Magnetic Charge,” Physical Review Letters, vol. 40, p. 147–150, Jan 1978.
[80] R. A. Brandt, F. Neri, and D. Zwanziger, “Lorentz invariance from classical particle paths in quantum field theory of electric and magnetic charge,” Physical Review D, vol. 19, p. 1153–1167, Feb 1979.
[81] R. A. Brandt and F. Neri, “Remarks on Zwanziger’s local quantum field theory of electric and magnetic charge,” Physical Review D, vol. 18, p. 2080–2090, Sep 1978.
[82] E. J. Chun, J. Park, and S. Scopel, “Dark matter and a new gauge boson through kinetic mixing,” Journal of High Energy Physics, vol. 2011, Feb 2011.
[83] G. Ripka, Dual Superconductor Models of Color Confinement. Springer Berlin, 2013.
[84] K. Petraki, L. Pearce, and A. Kusenko, “Self–interacting asymmetric dark matter coupled to a light massive dark photon,” Journal of Cosmology and Astroparticle Physics, vol. 2014, p. 039–039, Jul 2014.
[85] S. Weinberg, “Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations,” Physical Review, vol. 138, no. 4B, 1965.
[86] S. M. Lane and I. Moerdijk, Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer, 1992.
[87] P. Langacker, The Standard Model and Beyond. CRC Press, 2017.
[88] H. J. W. Müller–Kirsten, Electrodynamics: An Introduction including Quantum Effects.
World Scientific, 2011.
[89] Y. Frishman and J. Sonnenschein, Non–Perturbative Field Theory: From Two–Dimensional Conformal Field Theory to QCD in Four Dimensions. Cambridge University Press, 2014.
[90] M. C. Pedicchio and W. Tholen, Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory. Cambridge University Press, 2004.
[91] J. J. Rotman, An Introduction to Homological Algebra. Springer, 2009.
[92] H. Chan and S. T. Tsou, Some Elementary Gauge Theory Concepts. World Scientific,
1993.
[93] J. M. Leinaas, Classical Mechanics and Electrodynamics. World Scientific, 2019.
[94] A. Schwarz, Quantum Field Theory and Topology. Springer, 1993.
[95] D. Funaro, Electromagnetism and the Structure of Matter. World Scientific, 2008.
[96] R. Hofmann, The Thermodynamics of Quantum Yang–Mills Theory. World Scientific, 2011.
[97] S. Mac Lane, Homology. Springer, 1994.
[98] T. Cheng and L. Li, Gauge Theory of Elementary Particle Physics. Clarendon Press,
2011.
[99] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top