Login | Register

Visual Comfort Control Strategy for an Advanced Fenestration System in an Office Space

Title:

Visual Comfort Control Strategy for an Advanced Fenestration System in an Office Space

Ben Sassi, Iheb (2024) Visual Comfort Control Strategy for an Advanced Fenestration System in an Office Space. Masters thesis, Concordia University.

[thumbnail of BenSassi_MASc_S2024.pdf]
Preview
Text (application/pdf)
BenSassi_MASc_S2024.pdf - Accepted Version
Available under License Spectrum Terms of Access.
6MB

Abstract

Because of the current trends in buildings which favor a higher window to wall area ratio, the impact of fenestration on the indoor environment has become crucial. New technologies appearing in the market make windows an active tool in controlling visual and thermal comfort, while allowing for energy generation through renewable sources such as photovoltaics.
The goal of this study is to present a control strategy for an integrated venetian blinds system within a triple glazed window with bifacial silicon photovoltaic cells on the outer glazing to optimize occupant visual comfort within a one-person office space. To achieve this, four objectives were considered. First, a visual transmittance model was developed to mimic the real-life behavior of the window under clear and cloudy conditions. The model was then integrated into a control strategy that uses the fenestration as an active tool for ensuring optimal visual comfort for office related activities, while reducing the energy used for heating by controlling passive solar gains. The control strategy determines the optimal blind tilt angle at each time step based on the outdoor climate conditions and occupancy schedule of the space. Next, the model and control strategy output were validated using measured data from an outdoor test-room representing an office space in Montreal, Quebec. Finally, a sensitivity analysis was conducted to determine the impact of physical parameters of the indoor environment on the visual comfort of the occupants. The window to wall ratio, the reflectance of the surfaces, and the room geometry were analyzed through simulation.
Using the control strategy, the results show that under clear sky conditions, the space can be self-sufficient in terms of illuminance levels but deals with certain levels of glare throughout the day. However, even though glare is imperceptible throughout the occupancy period under cloudy sky conditions, the illuminance levels do not reach the required 300 lux threshold for 23% of the day, requiring the integration of an artificial lighting source to fill in the missing gap to achieve the needed levels. In terms of physical properties of the space, it was found that an increase in the room dimensions leads to a decrease in illuminance levels, while a decrease in window to wall ratio also has the same impact. The surfaces reflectance also affects visual comfort, since highly reflective surfaces increase the work plane illuminance compared to more opaque surfaces. Overall, the control strategy presented in this work can be scalable and applicable to any type of office space that uses a similar advanced fenestration system.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (Masters)
Authors:Ben Sassi, Iheb
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Building Engineering
Date:1 July 2024
Thesis Supervisor(s):Ouf, Mohamed and Athienitis, Andreas
Keywords:Visual comfort, BIPV, advanced fenestration systems, control strategy
ID Code:994382
Deposited By: Iheb Ben Sassi
Deposited On:24 Oct 2024 15:38
Last Modified:24 Oct 2024 15:38

References:

Aguilar-Santana, J. L., Velasco-Carrasco, M., & Riffat, S. (2020). Thermal Transmittance (U-value) Evaluation of Innovative Window Technologies. Future Cities and Environment, 6(1), 12. https://doi.org/10.5334/fce.99.

Alkhatib, H., Lemarchand, P., Norton, B., & O’Sullivan, D. T. J. (2021). Deployment and control of adaptive building facades for energy generation, thermal insulation, ventilation and daylighting: A review. Applied Thermal Engineering, 185, 116331. https://doi.org/10.1016/j.applthermaleng.2020.116331.

Al-Masrania, S. M., Al-Obaidi, K. M. (2019). Dynamic shading systems: A review of design parameters, platforms and evaluation strategies. Automation in Construction, 102, 195-216.

American Society of Heating, Refrigerating and Air-Conditioning Engineers. (2017). ASHRAE handbook: Fundamentals – SI edition. Atlanta, GA.

ASHRAE. (2016). ASHRAE Standard 90.1 – Performance Rating Method Reference Manual. Atlanta, US: American Society of Heating Refrigeration and Air Conditioning Engineers, Inc.

ASHRAE. (2022). Standard 90.1-2022 (I-P Edition): Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings. American Society of Heating, Refrigerating, and Air-Conditioning Engineers.

Athienitis, A. K., & Tzempelikos, A. (2002). A methodology for simulation of daylight room illuminance distribution and light dimming for a room with a controlled shading device. Solar Energy, 72(4), 271–281. https://doi.org/10.1016/S0038-092X(02)00016-6.

Baril, D. (2023, March 7). Future Buildings Lab image. In S. Hanley, Could planting trees around a building help offset its greenhouse-gas emissions? Yes, says new study, but not enough. Concordia University News. https://www.concordia.ca/cunews/encs/2023/03/07/trees-offset-greenhosuse-gases-buildings.html.

Barkaszi, S. F., & Dunlop, J. P. (2001). Discussion of Strategies for Mounting Photovoltaic Arrays on Rooftops. Solar Engineering 2001: (FORUM 2001: Solar Energy — The Power to Choose), 333–338. https://doi.org/10.1115/SED2001-142.

Barman, S., Chowdhury, A., Mathur, S., & Mathur, J. (2018). Assessment of the efficiency of window integrated CdTe based semi-transparent photovoltaic module. Sustainable Cities and Society, 37, 250–262. https://doi.org/10.1016/j.scs.2017.09.036.

Bellia, L., Fragliasso, F., & Stefanizzi, E. (2017). Daylit offices: A comparison between measured parameters assessing light quality and users’ opinions. Building and Environment, 113, 92–106. https://doi.org/10.1016/j.buildenv.2016.08.014.

Bessoudo, M., Athienitis, A., Zmeureanu, R., & Tzempelikos, A. (2010). Indoor thermal environmental conditions near glazed facades with shading devices – Part II: Thermal comfort simulation and impact of glazing and shading properties. Building and Environment, 45, 2517–2525. https://doi.org/10.1016/j.buildenv.2010.05.014.

Biyik, E., Araz, M., Hepbasli, A., Shahrestani, M., Yao, R., Shao, L., Essah, E., Oliveira, A. C., Del Caño, T., Rico, E., Lechón, J. L., Andrade, L., Mendes, A., & Atlı, Y. B. (2017). A key review of building integrated photovoltaic (BIPV) systems. Engineering Science and Technology, an International Journal, 20(3), 833–858. https://doi.org/10.1016/j.jestch.2017.01.009.

BSI. 2014. ISO 9869-1:2014- Thermal insulation — Building elements — Insitu measurement of thermal resistance and thermal transmittance; Part 1: Heat flow meter method, p. 48.

Cannavale, A., Hörantner, M., Eperon, G. E., Snaith, H. J., Fiorito, F., Ayr, U., & Martellotta, F. (2017). Building integration of semitransparent perovskite-based solar cells: Energy performance and visual comfort assessment. Applied Energy, 194, 94–107. https://doi.org/10.1016/j.apenergy.2017.03.011.

Chae, Y. T., Kim, J., Park, H., & Shin, B. (2014). Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells. Applied Energy, 129, 217–227. https://doi.org/10.1016/j.apenergy.2014.04.106.

Chaiwiwatworakul, P., Chirarattananon, S., & Rakkwamsuk, P. (2009). Application of automated blind for daylighting in tropical region. Energy Conversion and Management, 50(12), 2927–2943. https://doi.org/10.1016/j.enconman.2009.07.008.

Chan, Y.-C., & Tzempelikos, A. (2013). Efficient venetian blind control strategies considering daylight utilization and glare protection. Solar Energy, 98, 241–254. https://doi.org/10.1016/j.solener.2013.10.005.

Chen, Y., Athienitis, A. K., & Galal, K. (2010). Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept. Solar Energy, 84(11), 1892–1907. https://doi.org/10.1016/j.solener.2010.06.013.

CIE 85 (1989) Technical Report, Solar Spectral Irradiance. CIE Publication no. 85, TC 2.17, Commission Internationale de l’Eclairage.

Cuce, E., & Riffat, S. B. (2015). A state-of-the-art review on innovative glazing technologies. Renewable and Sustainable Energy Reviews, 41, 695–714. https://doi.org/10.1016/j.rser.2014.08.084.


Cuce, E., Young, C.-H., & Riffat, S. B. (2014). Performance investigation of heat insulation solar glass for low-carbon buildings. Energy Conversion and Management, 88, 834–841. https://doi.org/10.1016/j.enconman.2014.09.021.

Cui, Y., Ke, Y., Liu, C., Chen, Z., Wang, N., Zhang, L., Zhou, Y., Wang, S., Gao, Y., & Long, Y. (2018). Thermochromic VO2 for Energy-Efficient Smart Windows. Joule, 2(9), 1707–1746. https://doi.org/10.1016/j.joule.2018.06.018.

Dirnberger, D. (2015). Uncertainties in Energy Rating for Thin-film PV Modules. https://doi.org/10.13140/RG.2.1.3020.1687.

Doulos, L., Tsangrassoulis, A., & Topalis, F. (2005). A CRITICAL REVIEW OF SIMULATION TECHNIQUES FOR DAYLIGHT RESPONSIVE SYSTEMS.

Dounis, A. I., & Caraiscos, C. (2009). Advanced control systems engineering for energy and comfort management in a building environment—A review. Renewable and Sustainable Energy Reviews, 13(6–7), 1246–1261. https://doi.org/10.1016/j.rser.2008.09.015

Einhorn, H.D. (1969). A new method for the assessment of discomfort glare, Lighting Research and Technology 1 (4) 235–247.

Evola, G., Gullo, F., & Marletta, L. (2017). The role of shading devices to improve thermal and visual comfort in existing glazed buildings. Energy Procedia, 134, 346–355. https://doi.org/10.1016/j.egypro.2017.09.543.

F. Reinhart, C., J. Alstan, J. and Ibarra, D. (2013) ‘DEFINITION OF A REFERENCE OFFICE FOR STANDARDIZED EVALUATIONS.pdf’.

Fang, Y., Eames, P. C., Norton, B., Hyde, T. J., Zhao, J., Wang, J., & Huang, Y. (2007). Low emittance coatings and the thermal performance of vacuum glazing. Solar Energy, 81(1), 8–12. https://doi.org/10.1016/j.solener.2006.06.011.
Fanger, P. O. (1988). Fundamentals of thermal comfort. In Advances In Solar Energy Technology (pp. 3056-3061). Pergamon.

Favoino, F., Loonen, R. C. G. M., Michael, M., De Michele, G., & Avesani, S. (2022). Advanced fenestration—Technologies, performance and building integration. In Rethinking Building Skins (pp. 117–154). Elsevier. https://doi.org/10.1016/B978-0-12-822477-9.00038-3.

Feng, F., Kunwar, N., Cetin, K., & O’Neill, Z. (2021). A critical review of fenestration/window system design methods for high performance buildings. Energy and Buildings, 248, 111184. https://doi.org/10.1016/j.enbuild.2021.111184.

Galasiu, A. D., Atif, M. R., & MacDonald, R. A. (2004). Impact of window blinds on daylight-linked dimming and automatic on/off lighting controls. Solar Energy, 76(5), 523–544. https://doi.org/10.1016/j.solener.2003.12.007.

Ghosh, A. (2022). Fenestration integrated BIPV (FIPV): A review. Solar Energy, 237, 213–230. https://doi.org/10.1016/j.solener.2022.04.013.

Gong, J., Liang, J., & Sumathy, K. (2012). Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8), 5848–5860. https://doi.org/10.1016/j.rser.2012.04.044.

Green, M., Dunlop, E., Hohl‐Ebinger, J., Yoshita, M., Kopidakis, N., & Hao, X. (2021). Solar cell efficiency tables (version 57). Progress in Photovoltaics: Research and Applications, 29(1), 3–15. https://doi.org/10.1002/pip.3371.

Guerrero-Lemus, R., Vega, R., Kim, T., Kimm, A., & Shephard, L. E. (2016). Bifacial solar photovoltaics – A technology review. Renewable and Sustainable Energy Reviews, 60, 1533–1549. https://doi.org/10.1016/j.rser.2016.03.041.

Hassan, Q., Jaszczur, M., Przenzak, E., & Abdulateef, J. (2016). The PV cell temperature effect on the energy production and module efficiency.

Henemann, A. (2008). BIPV: Built-in solar energy. Renewable Energy Focus, 9(6), 14–19. https://doi.org/10.1016/S1471-0846(08)70179-3.

Hirning, M. B., Isoardi, G. L., & Cowling, I. (2014). Discomfort glare in open plan green buildings. Energy and Buildings, 70, 427–440. https://doi.org/10.1016/j.enbuild.2013.11.053.

Huchuk, B., Gunay, H. B., O’Brien, W., & Cruickshank, C. A. (2016). Model-based predictive control of office window shades. Building Research & Information, 44(4), 445–455. https://doi.org/10.1080/09613218.2016.1101949

Iwata, T., Hatao, A., Shukuya, M., & Kimura, K. -i. (1994). Visual comfort in the daylit luminous environment: Structural model for evaluation. Lighting Research and Technology, 26(2), 91–97. https://doi.org/10.1177/096032719402600203.
Jain, S., & Garg, V. (2018). A review of open loop control strategies for shades, blinds and integrated lighting by use of real-time daylight prediction methods. Building and Environment, 135, 352–364. https://doi.org/10.1016/j.buildenv.2018.03.018.

Jain, S., & Garg, V. (2018). A review of open loop control strategies for shades, blinds and integrated lighting by use of real-time daylight prediction methods. Building and Environment, 135, 352–364. https://doi.org/10.1016/j.buildenv.2018.03.018.


Jakubiec, J. A., Srisamranrungruang, T., Kong, Z., Quek, G., & Talami, R. (2019). Subjective and Measured Evidence for Residential Lighting Metrics in the Tropics. 1151–1159. https://doi.org/10.26868/25222708.2019.210898.

Jelle, B. P., & Breivik, C. (2012). The Path to the Building Integrated Photovoltaics of Tomorrow. Energy Procedia, 20, 78–87. https://doi.org/10.1016/j.egypro.2012.03.010.

Jelle, B. P., Hynd, A., Gustavsen, A., Arasteh, D., Goudey, H., & Hart, R. (2012). Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities. Solar Energy Materials and Solar Cells, 96, 1–28. https://doi.org/10.1016/j.solmat.2011.08.010.
Kang, J.-G., Kim, J.-H., & Kim, J.-T. (2013). Performance Evaluation of DSC Windows for Buildings. International Journal of Photoenergy, 2013, 1–6. https://doi.org/10.1155/2013/472086.

Ke, et al., Smart windows: electro-, thermo-, mechano-, photochromics, and beyond, Adv. Energy Mater. 9 (39) (2019) 1902066.

Kim, J.-H., Park, Y.-J., Yeo, M.-S., & Kim, K.-W. (2009). An experimental study on the environmental performance of the automated blind in summer. Building and Environment, 44(7), 1517–1527. https://doi.org/10.1016/j.buildenv.2008.08.006.

Kong, H., Yu, Z., Zhang, J., Han, Y., Wu, L., Wang, H., & Wang, J. (2020). Perspective of CIGS-BIPV’s Product Competitiveness in China. International Journal of Photoenergy, 2020, 1–10. https://doi.org/10.1155/2020/5392594.

Kong, Z., Utzinger, D. M., Freihoefer, K., & Steege, T. (2018). The impact of interior design on visual discomfort reduction: A field study integrating lighting environments with POE survey. Building and Environment, 138, 135–148. https://doi.org/10.1016/j.buildenv.2018.04.025.


Korsavi, S. S., Zomorodian, Z. S., & Tahsildoost, M. (2016). Visual comfort assessment of daylit and sunlit areas: A longitudinal field survey in classrooms in Kashan, Iran. Energy and Buildings, 128, 305–318. https://doi.org/10.1016/j.enbuild.2016.06.091.

Kreinin, L., Karsenty, A., Grobgeld, D., & Eisenberg, N. (2016). PV systems based on bifacial modules: Performance simulation vs. design factors. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2688–2691. https://doi.org/10.1109/PVSC.2016.7750138.

Kuhn, T. E. (2017). State of the art of advanced solar control devices for buildings. Solar Energy, 154, 112–133. https://doi.org/10.1016/j.solener.2016.12.044.
Lee, E. S., DiBartolomeo, D. L., & Selkowitz, S. E. (1998). Thermal and daylighting performance of an automated venetian blind and lighting system in a full-scale private office. Energy and Buildings, 29(1), 47–63. https://doi.org/10.1016/S0378-7788(98)00035-8.

LI-COR, Inc. (2022a). LI-200R Pyranometer. Lincoln, NE: LI-COR Environmental. Retrieved from https://www.licor.com/env/products/light/pyranometer.

LI-COR, Inc. (2022b). LI-210R Photometric Sensor. Lincoln, NE: LI-COR Environmental. Retrieved from https://www.licor.com/env/products/light/photometric.
Loonen, R. C. G. M., Trčka, M., Cóstola, D., & Hensen, J. L. M. (2013). Climate adaptive building shells: State-of-the-art and future challenges. Renewable and Sustainable Energy Reviews, 25, 483–493. https://doi.org/10.1016/j.rser.2013.04.016.

Lu, L., & Law, K. M. (2013). Overall energy performance of semi-transparent single-glazed photovoltaic (PV) window for a typical office in Hong Kong. Renewable Energy, 49, 250–254. https://doi.org/10.1016/j.renene.2012.01.021.



Maghrabie, H. M., Elsaid, K., Sayed, E. T., Abdelkareem, M. A., Wilberforce, T., & Olabi, A. G. (2021). Building-integrated photovoltaic/thermal (BIPVT) systems: Applications and challenges. Sustainable Energy Technologies and Assessments, 45, 101151. https://doi.org/10.1016/j.seta.2021.101151.

Mahdavi, A., & Spasojevic, B. (2006). An energy-efficient simulation-assisted lighting control system for buildings.

Mangkuto, R. A., Kurnia, K. A., Azizah, D. N., Atmodipoero, R. T., & Soelami, F. X. N. (2017). Determination of discomfort glare criteria for daylit space in Indonesia. Solar Energy, 149, 151–163. https://doi.org/10.1016/j.solener.2017.04.010.

Mende, S., Frontini, F. and Wienold, J. (2011) ‘Comfort and building performance analysis of transparent building integrated silicon photovoltaics’ p.9.

Ming, Y., Sun, Y., Liu, X., Liu, X., & Wu, Y. (2024). Thermal performance of an advanced smart fenestration systems for low-energy buildings. Applied Thermal Engineering, 244, 122610. https://doi.org/10.1016/j.applthermaleng.2024.122610.

Murdoch J. B. (1985). Illumination Engineering—From Edison’s Lamp to the Laser, Macmillan Publishing Inc, New York.
Nabil, A., & Mardaljevic, J. (2005). Useful daylight illuminance: A new paradigm for assessing daylight in buildings. Lighting Research & Technology, 37(1), 41–57. https://doi.org/10.1191/1365782805li128oa.
National Fenestration Rating Council (NFRC). 2017b. NFRC 200-2017, Procedure for Determining Fenestration Product Solar Heat Gain Coefficient and Visible Transmittance at Normal Incidence, National Fenestration Rating Council, Inc., Greenbelt, MD.
Natural Resources Canada (2016). Report on Plans and Priorities. Minister of Natural Resources.

Natural Resources Canada (2017). Report on Plans and Priorities. Minister of Natural Resources.
Natural Resources Canada. (2023a). Energy efficiency: An essential part of Canada’s net-zero future - Report to Parliament under the Energy Efficiency Act 2021-2022.

Natural Resources Canada. (2023b). 2023-24 Departmental plan. Retrieved from https://www.nrcan.gc.ca/transparency/reporting-and-accountability/plans-and-performance-reports/departmental-plan/205.

Naylor, D., & Lai, B. Y. (2007). Experimental Study of Natural Convection in a Window with a Between-Panes Venetian Blind. Experimental Heat Transfer, 20(1), 1–17. https://doi.org/10.1080/08916150600977358.

Ng, P. K., Mithraratne, N., & Kua, H. W. (2013). Energy analysis of semi-transparent BIPV in Singapore buildings. Energy and Buildings, 66, 274–281. https://doi.org/10.1016/j.enbuild.2013.07.029.

Park, K. E., Kang, G. H., Kim, H. I., Yu, G. J., & Kim, J. T. (2010). Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module. Energy, 35(6), 2681–2687. https://doi.org/10.1016/j.energy.2009.07.019.

Piccolo, A., & Simone, F. (2015). Energy Performance of an All-Solid State Electrochromic Prototype for Smart Window Applications. Energy Procedia, 78, 110–115. https://doi.org/10.1016/j.egypro.2015.11.123.

Quesada, G., Rousse, D., Dutil, Y., Badache, M., & Hallé, S. (2012). A comprehensive review of solar facades. Opaque solar facades. Renewable and Sustainable Energy Reviews, 16(5), 2820–2832. https://doi.org/10.1016/j.rser.2012.01.078.


Reinhart, C. F., Mardaljevic, J., & Rogers, Z. (2006). Dynamic Daylight Performance Metrics for Sustainable Building Design. LEUKOS, 3(1), 7–31. https://doi.org/10.1582/LEUKOS.2006.03.01.001.
Richhariya, G., Kumar, A., Tekasakul, P., & Gupta, B. (2017). Natural dyes for dye sensitized solar cell: A review. Renewable and Sustainable Energy Reviews, 69, 705–718. https://doi.org/10.1016/j.rser.2016.11.198.

Robinson, L., & Athienitis, A. (2009). DESIGN METHODOLOGY FOR OPTIMIZATION OF ELECTRICITY GENERATION AND DAYLIGHT UTILIZATION FOR FAÇADE WITH SEMITRANSPARENT PHOTOVOLTAICS. 8.

Robinson, L., & Athienitis, A. (2009). DESIGN METHODOLOGY FOR OPTIMIZATION OF ELECTRICITY GENERATION AND DAYLIGHT UTILIZATION FOR FAÇADE WITH SEMITRANSPARENT PHOTOVOLTAICS. 8.

Russell, T. C. R., Saive, R., Augusto, A., Bowden, S. G., & Atwater, H. A. (2017). The Influence of Spectral Albedo on Bifacial Solar Cells: A Theoretical and Experimental Study. IEEE Journal of Photovoltaics, 7(6), 1611–1618. https://doi.org/10.1109/JPHOTOV.2017.2756068.

Sanati, L., & Utzinger, M. (2013). The effect of window shading design on occupant use of blinds and electric lighting. Building and Environment, 64, 67–76. https://doi.org/10.1016/j.buildenv.2013.02.013.

Santbergen, R., & Van Zolingen, R. J. C. (2008). The absorption factor of crystalline silicon PV cells: A numerical and experimental study. Solar Energy Materials and Solar Cells, 92(4), 432–444. https://doi.org/10.1016/j.solmat.2007.10.005.

Selvaraj, P., Ghosh, A., Mallick, T. K., & Sundaram, S. (2019). Investigation of semi-transparent dye-sensitized solar cells for fenestration integration. Renewable Energy, 141, 516–525. https://doi.org/10.1016/j.renene.2019.03.146.
Shafavi, N. S., Zomorodian, Z. S., Tahsildoost, M., & Javadi, M. (2020). Occupants visual comfort assessments: A review of field studies and lab experiments. Solar Energy, 208, 249–274. https://doi.org/10.1016/j.solener.2020.07.058.

Shirazi, A. M., Zomorodian, Z. S., & Tahsildoost, M. (2019). Techno-economic BIPV evaluation method in urban areas. Renewable Energy, 143, 1235–1246. https://doi.org/10.1016/j.renene.2019.05.105.

Sigounis, A.-M., Vallianos, C., & Athienitis, A. (2023). Model predictive control of air-based building integrated PV/T systems for optimal HVAC integration. Renewable Energy, 212, 655–668. https://doi.org/10.1016/j.renene.2023.05.059.

Stanley, C., Mojiri, A., & Rosengarten, G. (2016). Spectral light management for solar energy conversion systems. Nanophotonics, 5(1), 161–179. https://doi.org/10.1515/nanoph-2016-0035.

Tabadkani, A., Roetzel, A., Li, H. X., & Tsangrassoulis, A. (2020). A review of automatic control strategies based on simulations for adaptive facades. Building and Environment, 175, 106801. https://doi.org/10.1016/j.buildenv.2020.106801.

Tzempelikos, A., & Athienitis, A. K. (2007). The impact of shading design and control on building cooling and lighting demand. Solar Energy, 81(3), 369–382. https://doi.org/10.1016/j.solener.2006.06.015.

U.S. Department of Energy. (n.d.). Solar radiation basics. Energy.gov. Retrieved April 2024, from https://www.energy.gov/eere/solar/solar-radiation-basics.

United Nations Environment Programme. (2020). 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient, and Resilient Buildings and Construction Sector. United Nations Environment Programme.
Valdivia, C. E., Li, C. T., Russell, A., Haysom, J. E., Li, R., Lekx, D., Sepeher, M. M., Henes, D., Hinzer, K., & Schriemer, H. P. (2017). Bifacial Photovoltaic Module Energy Yield Calculation and Analysis. 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 1094–1099. https://doi.org/10.1109/PVSC.2017.8366206.

Vats, K., Tomar, V., & Tiwari, G. N. (2012). Effect of packing factor on the performance of a building integrated semitransparent photovoltaic thermal (BISPVT) system with air duct. Energy and Buildings, 53, 159–165. https://doi.org/10.1016/j.enbuild.2012.07.004.

Wagner, A., O’Brien, W., & Dong, B. (2018). Exploring occupant behavior in buildings. Wagner, A., O’Brien, W., Dong, B., Eds, 55, 1267-1273.

Wienold, J. (2010) Daylight glare in offices. Stuttgart: Fraunhofer-Verl.

Wienold, J., & Christoffersen, J. (2006). Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy and Buildings, 38(7), 743–757. https://doi.org/10.1016/j.enbuild.2006.03.017.

Wong and Chan, Smart glass and its potential in energy savings, J. Energy Res. Technol. 136 (1) (2014).

Yu, G., Yang, H., Luo, D., Cheng, X., & Ansah, M. K. (2021). A review on developments and research of building integrated photovoltaic (BIPV) windows and shading blinds. Renewable and Sustainable Energy Reviews, 149, 111355. https://doi.org/10.1016/j.rser.2021.111355.

Yun, G., Yoon, K.C. and Kim, K.S. (2014) ‘The influence of shading control strategies on the visual comfort and energy demand of office buildings’, Energy and Buildings, 84, pp. 70–85. Available at: https://doi.org/10.1016/j.enbuild.2014.07.040.

Yusufoglu, U. A., Pletzer, T. M., Koduvelikulathu, L. J., Comparotto, C., Kopecek, R., & Kurz, H. (2015). Analysis of the Annual Performance of Bifacial Modules and Optimization Methods. IEEE Journal of Photovoltaics, 5(1), 320–328. https://doi.org/10.1109/JPHOTOV.2014.2364406.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top