Mazidi, Mohammad (2025) Robust Haptics with Nonlinear Impedance Matching for Robot-assisted Laparoscopic Surgery. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
2MBMazidi_MASc_F2025.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
The integration of haptic feedback into robot-assisted minimally invasive surgery (RAMIS) has been constrained by challenges in accurately rendering forces while maintaining system stability and safety. Addressing these limitations, this research introduces the Nonlinear Impedance Matching Approach (NIMA), a novel force-rendering method designed to accurately model complex tool-tissue interactions. Building on the Impedance Matching Approach (IMA), NIMA incorporates nonlinear dynamics to enhance the precision and reliability of force feedback systems. The experimental results demonstrate that NIMA achieves a mean absolute error (MAE) of 0.01 ± 0.02 N, representing a 95% reduction in error compared to IMA. Notably, NIMA eliminates haptic ”kickback” by ensuring that no residual force is applied to the user’s hand when releasing the haptic device, significantly improving both user comfort and patient safety. Furthermore, its ability to account for the nonlinearities of tool-tissue interactions allows for high fidelity, responsiveness, and precision across diverse surgical conditions. This research advances the development of robust, high-performance haptic systems, offering a transformative solution to the challenges of force rendering in teleoperated surgical robotics. By providing a realistic and reliable interface for robotic-assisted surgical procedures, NIMA has the potential to enhance surgical precision, optimize patient outcomes, and set new standards for haptic feedback in RAMIS.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Mazidi, Mohammad |
Institution: | Concordia University |
Degree Name: | M.A. Sc. |
Program: | Mechanical Engineering |
Date: | 20 January 2025 |
Thesis Supervisor(s): | Dargahi, Javad and Hooshiar, Amir |
ID Code: | 995035 |
Deposited By: | Mohammad Mazidi |
Deposited On: | 17 Jun 2025 17:20 |
Last Modified: | 17 Jun 2025 17:20 |
References:
[1] Kuo Chen, Narasimha M Beeraka, Jin Zhang, . . , .. , Mikhail Y. Sinelnikov, and Liudmila M.Mikhaleva. Efficacy of da vinci robot-assisted lymph node surgery than conventional axillary
lymphnodedissection in breast cancer– a comparative study. International Journal of Medical
Robotics and Computer Assisted Surgery, 2021. doi: 10.1002/rcs.2307.
[2] Ioannis D. Gkegkes, Ioannis Mamais, and Christos Iavazzo. Robotics in general surgery:
A systematic cost assessment. Journal of Minimal Access Surgery, 2017. doi: 10.4103/
0972-9941.195565.
[3] Youn-Jee Chung, So Yeon Kang, Mi Rang Choi, Hyun Hee Cho, Jang Heub Kim, and Mee
Ran Kim. Robot-assisted laparoscopic adenomyomectomy for patients who want to preserve
fertility. Yonsei Medical Journal, 2016. doi: 10.3349/ymj.2016.57.6.1531.
[4] BenjaminB.Albright, Tilman Witte, Alena N. Tofte, Jeremy Chou, Jonathan Black, Vrunda B.
Desai, and Elisabeth A. Erekson. Robotic versus laparoscopic hysterectomy for benign dis
ease: A systematic review and meta-analysis of randomized trials. Journal of Minimally Inva
sive Gynecology, 2016. doi: 10.1016/j.jmig.2015.08.003.
[5] Estefan´ ıa Ruiz Guerrero, A.V. Ojeda Claro, M.J. Ledo Cepero, M. Soto Delgado, and Jos´e Lu´ ıs
Fern´ andez. Robotic versus laparoscopic partial nephrectomy in the new era: Systematic re
view. Cancers, 2023. doi: 10.3390/cancers15061793.
[6] AI Ikebuchi. Outcome of robot-assisted surgery for stage ia endometrial cancer compared
to open and laparoscopic surgery: A retrospective study at a single institution. 2023. doi:
10.21203/rs.3.rs-3728184/v1.
60
[7] Inci Sahin and Bilgi Baca. Robotic-assisted laparoscopic complete mesocolic excision. Di
gestive Disease Interventions, 2023. doi: 10.1055/s-0042-1760369.
[8] Sehyun Baek, Dong Hoon Lee, and Seon Hahn Kim. Current status of robot-assisted gastric
surgery. World Journal of Gastrointestinal Oncology, 2011. doi: 10.4251/wjgo.v3.i10.137.
[9] Longke Ran, Jing Jin, Yan Xu, Youquan Bu, and Fangzhou Song. Comparison of robotic
surgery with laparoscopy and laparotomy for treatment of endometrial cancer: A meta
analysis. Plos One, 2014. doi: 10.1371/journal.pone.0108361.
[10] Y. He, Y. Zhang, and X. Liu. The role of haptic feedback in robotic-assisted surgery: A
review. International Journal of Medical Robotics and Computer Assisted Surgery, 9(3):275
283, 2013. doi: 10.1002/rcs.1515.
[11] H. Wu, L. Chen, and Y. Zhao. Mechanical properties of biological tissues: Implications for
robotic surgery. Biomechanics and Modeling in Mechanobiology, 21(3):789–802, 2022. doi:
10.1007/s10237-021-01412-4.
[12] J. Ueda. Advances in haptic technology for robotic surgery: Current trends and future direc
tions. Surgical Innovation, 30(1):45–52, 2023. doi: 10.1177/15533506211012345.
[13] J. Currie, A. Smith, and R. Johnson. The impact of haptic feedback on surgical perfor
mance: A systematic review. Journal of Robotic Surgery, 10(4):345–352, 2016. doi:
10.1007/s11701-016-0623-4.
[14] J. Zhu, Z. Liu, and Y. Chen. The limitations of visual feedback in robotic surgery: A review of
the literature. Surgical Endoscopy, 30(5):2030–2036, 2016. doi: 10.1007/s00464-015-4315-5.
[15] I. Farkhatdinov and J. Ryu. Control issues in robotic systems with force feedback: Implications
for surgical applications. International Journal of Robotics Research, 29(6):749–762, 2010.
doi: 10.1177/0278364909356683.
[16] A. Abiri, M. Parnian, and M. Khosravi. The impact of haptic feedback on surgical precision:
A review of current literature. Journal of Robotic Surgery, 13(1):1–10, 2019. doi: 10.1007/
s11701-018-0810-5.
61
[17] J. R. Bethea, T. J. Smith, and L. A. Johnson. The effects of haptic feedback on surgical
performance: A clinical study. Surgical Endoscopy, 18(4):654–658, 2004. doi: 10.1007/
s00464-003-9035-8.
[18] M. Rehan, A. Othman, and M. Khan. Real-time force feedback systems in robotic surgery:
Challenges and opportunities. Medical Image Analysis, 73:102–115, 2022. doi: 10.1016/j.
media.2021.102115.
[19] Aiden Mazidi, Andr´ es C Ramos, Amir Sayadi, Javad Dargahi, Jake Barralet, Liane S Feld
man, and Amir Hooshiar. Nonlinear impedance matching approach (nima) for robust haptic
rendering during robotic laparoscopy surgery. In 2024 10th IEEE RAS/EMBS International
Conference for Biomedical Robotics and Biomechatronics (BioRob), pages 1809–1814. IEEE,
2024.
[20] F. Amirabdollahian, S. Livatino, B. Vahedi, R. Gudipati, P. Sheen, S. Gawrie-Mohan, and
N. Vasdev. Prevalence of haptic feedback in robot-mediated surgery: a systematic review of
literature. Journal of Robotic Surgery, 12:11–25, 2017. doi: 10.1007/s11701-017-0763-4.
[21] A.M.Okamura. Methodsforhapticfeedbackinteleoperated robot-assisted surgery. Industrial
Robot: An International Journal, 31:499–508, 2004. doi: 10.1108/01439910410566362.
[22] C. Pacchierotti, D. Prattichizzo, and K. J. Kuchenbecker. Cutaneous feedback of fingertip
deformation and vibration for palpation in robotic surgery. IEEE Transactions on Biomedical
Engineering, 63:278–287, 2016. doi: 10.1109/tbme.2015.2455932.
[23] O. v. d. Meijden and M. P. Schijven. The value of haptic feedback in conventional and robot
assisted minimal invasive surgery and virtual reality training: a current review. Surgical En
doscopy, 23:1180–1190, 2009. doi: 10.1007/s00464-008-0298-x.
[24] A. A. Gumbs, I. Frigerio, G. Spolverato, R. S. Croner, A. Illanes, E. Chouillard, and E. Elyan.
Artificial intelligence surgery: how do we get to autonomous actions in surgery? Sensors, 21:
5526, 2021. doi: 10.3390/s21165526.
62
[25] Amir Hooshiar, Siamak Najarian, and Javad Dargahi. Haptic telerobotic cardiovascular inter
vention: a review of approaches, methods, and future perspectives. IEEE reviews in biomedical
engineering, 13:32–50, 2019.
[26] M. Zhou, Y. Qi-ming, K. Huang, S. Mahov, A. Eslami, M. Maier, C. P. Lohmann, N. Navab,
D. Zapp, A. Knoll, and M. A. Nasseri. Towards robotic-assisted subretinal injection: a hy
brid parallel–serial robot system design and preliminary evaluation. IEEE Transactions on
Industrial Electronics, 67:6617–6628, 2020. doi: 10.1109/tie.2019.2937041.
[27] M.J.FuandM.C.C ¸avus¸o˘ glu. Human-arm-and-hand-dynamic modelwithvariability analyses
for a stylus-based haptic interface. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 42:1633–1644, 2012. doi: 10.1109/tsmcb.2012.2197387.
[28] D. Prattichizzo, C. Pacchierotti, and G. Rosati. Cutaneous force feedback as a sensory
subtraction technique in haptics. IEEE Transactions on Haptics, 5:289–300, 2012. doi:
10.1109/toh.2012.15.
[29] B. Siciliano. Parallel force/position control of robot manipulators. Robotics Research, pages
78–89, 1996. doi: 10.1007/978-1-4471-1021-7 9.
[30] S. S. Parsi, M. V. Sivaselvan, and A. S. Whittaker. Impedance-matching model-in-the-loop
simulation. Earthquake Engineering &Amp; Structural Dynamics, 52:3600–3621, 2023. doi:
10.1002/eqe.3922.
[31] Z. Pezzementi, E. Plaku, C. Reyda, and G. D. Hager. Tactile-object recognition from appear
ance information. IEEE Transactions on Robotics, 27:473–487, 2011. doi: 10.1109/tro.2011.
2125350.
[32] G. Liu, Y. Wang, C. Huang, C. Guan, D. Ma, Z. Wei, and X. Qiu. Experimental evaluation on
haptic feedback accuracy by using two self-made haptic devices and one additional interface
in robotic teleoperation. Actuators, 11:24, 2022. doi: 10.3390/act11010024.
[33] Amir Sayadi, Amir Hooshiar, and Javad Dargahi. Impedance matching approach for robust
63
force feedback rendering with application in robot-assisted interventions. In 2020 8th Interna
tional Conference on Control, Mechatronics and Automation (ICCMA), pages 18–22. IEEE,
2020.
[34] Amir Hooshiar, Amir Sayadi, Javad Dargahi, and Siamak Najarian. Integral-free spatial
orientation estimation method and wearable rotation measurement device for robot-assisted
catheter intervention. IEEE/ASME Transactions on Mechatronics, 27(2):766–776, 2022. doi:
10.1109/TMECH.2021.3071295.
[35] M. Perez, F. Quiaios, P. Andrivon, D. Husson, M. Dufaut, J. Felblinger, and J. Hubert.
Paradigms and experimental set-up for the determination of the acceptable delay in telesurgery.
2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, 2007. doi: 10.1109/iembs.2007.4352321.
[36] G. M. Fried. Fls assessment of competency using simulated laparoscopic tasks. Journal of
Gastrointestinal Surgery, 12:210–212, 2007. doi: 10.1007/s11605-007-0355-0.
[37] J. Colan, A. Davila, and Y. Hasegawa. A review on tactile displays for conventional laparo
scopic surgery. Surgeries, 3(4):334–346, 2022. doi: 10.3390/surgeries3040036.
[38] Amir Hadi Hosseinabadi and Septimiu E. Salcudean. Force sensing in robot-assisted keyhole
endoscopy: A systematic survey. The International Journal of Robotics Research, 41(2):136
162, 2021. doi: 10.1177/02783649211052067.
[39] Allison M. Okamura, Lisa N. Verner, Carol E. Reiley, and Mohsen Mahvash. Haptics for
robot-assisted minimally invasive surgery. In Springer Tracts in Advanced Robotics, pages
361–373. Springer, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-14743-2\
Appendix
Repository Staff Only: item control page