Login | Register

Leveraging Machine Learning Classifiers for Backorder Prediction: A Comprehensive Framework for Enhancing Supply Chain Efficiency and Inventory Management Addressing Class Imbalance issue in Backorder Prediction

Title:

Leveraging Machine Learning Classifiers for Backorder Prediction: A Comprehensive Framework for Enhancing Supply Chain Efficiency and Inventory Management Addressing Class Imbalance issue in Backorder Prediction

Sepehrnia, Amin ORCID: https://orcid.org/0009-0009-2279-2583 (2025) Leveraging Machine Learning Classifiers for Backorder Prediction: A Comprehensive Framework for Enhancing Supply Chain Efficiency and Inventory Management Addressing Class Imbalance issue in Backorder Prediction. Masters thesis, Concordia University.

[thumbnail of Sepehrnia_MSc_S2025.pdf]
Preview
Text (application/pdf)
Sepehrnia_MSc_S2025.pdf - Accepted Version
Available under License Spectrum Terms of Access.
3MB

Abstract

The current research explores the application of advanced machine learning and ensemble learning techniques to address the challenges of backorder prediction in supply chain management, specifically when the dataset is severely imbalanced. Considering the critical importance of accurate forecasting in supply chains, this study evaluates the performance of five resampling techniques (Random Under Sampling, ADASYN, SMOTE-ENN, Borderline-SMOTE, and SMOTE-SVM), combined with hyperparameter tuning (Randomized Search CV) and two cross-validation methods (5-fold and 10-fold). The research methodology involved training 98 combinations of two machine learning and five ensemble learning models, incorporating feature selection with SHAP and dimensionality reduction using PCA, alongside sophisticated data preprocessing techniques such as MICE for handling missing values. The primary evaluation metric is AUC-ROC, complemented by secondary metrics including balanced accuracy, F1 Score, and AUC-PR, ensuring a holistic assessment of model performance. Key findings demonstrate that ensemble learning models, particularly XGBoost, outperforms classical machine learning models in terms of robustness and being accurate in backorder prediction. Resampling techniques such as SMOTE-ENN and Random Under Sampling significantly enhance model performance, with SMOTE-ENN proving especially effective due to its noise reduction capabilities. Interestingly, dimensionality reduction using PCA was found to have little benefit, whereas feature selection using SHAP consistently improved efficiency and accuracy. The insights derived from this study provide a comprehensive framework for improving predictive performance in supply chain management applications, specifically backorder prediction. By addressing class imbalance, optimizing preprocessing techniques, and rigorously evaluating resampling methods, this research establishes best practices for tackling forecasting challenges in imbalanced, high-dimensional data environments.

Divisions:Concordia University > John Molson School of Business > Supply Chain and Business Technology Management
Item Type:Thesis (Masters)
Authors:Sepehrnia, Amin
Institution:Concordia University
Degree Name:M. Sc.
Program:Supply Chain Management
Date:20 January 2025
Thesis Supervisor(s):Lahmiri, Salim
Keywords:Keywords: Supply Chain Management, Backorder Prediction, Machine Learning, Demand Forecasting, Inventory Management, Imbalanced Class
ID Code:995154
Deposited By: Amin Sepehrnia
Deposited On:17 Jun 2025 17:47
Last Modified:18 Jun 2025 00:00

References:

Abbas, K., Afaq, M., Khan, T. A., and Song, W. C. (2020). A blockchain and machine learning-based drug supply chain management and recommendation system for smart pharmaceutical industry. Electronics, 9(5), 852. https://doi.org/10.3390/electronics9050852.
Abbasi, B., Babaei, T., Hosseinifard, Z., Smith-Miles, K., and Dehghani, M. (2020). Predicting solutions of large-scale optimization problems via machine learning: A case study in blood supply chain management. Computers & Operations Research, 119, 104941. https://doi.org/10.1016/j.cor.2020.104941.
Abdi, H., and Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. https://doi.org/10.1002/wics.101.
Adana, S., Cevikparmak, S., Celik, H., and Uvet, H. (2019, November). Predicting backorders using machine learning techniques. Proceedings of the 50th Annual Conference of the Decision Sciences Institute.
Aguilar-Palacios, C., Muñoz-Romero, S., and Rojo-Álvarez, J. L. (2020). Cold-start promotional sales forecasting through gradient boosted-based contrastive explanations. IEEE Access, 8, 137574-137586. https://doi.org/10.1109/ACCESS.2020.3011805.
Ahmed, F., Hasan, M., Hossain, M. S., and Andersson, K. (2022). Comparative performance of tree-based machine learning classifiers in product backorder prediction. In P. Vasant, G.-W. Weber, J. A. Marmolejo-Saucedo, E. Munapo, and J. J. Thomas (Eds.), Intelligent computing and optimization (Vol. 569, pp. 572–584). Springer International Publishing. https://doi.org/10.1007/978-3-031-19958-5_54.
Ali, A., Jayaraman, R., Azar, E., and Maalouf, M. (2024). Maximizing supply chain performance leveraging machine learning to anticipate customer backorders. Computers and Industrial Engineering, 194, 110414. https://doi.org/10.1016/j.cie.2024.110414.
Arowolo, M. O., Aigbogun, H. E., Michael, P. E., Adebiyi, M. O., and Tyagi, A. K. (2023). A predictive model for classifying colorectal cancer using principal component analysis. In Data Science for Genomics (pp. 205–216). Elsevier. https://doi.org/10.1016/B978-0-323-98352-5.00004-5.
Awe, O. O., and Vance, E. A. (Eds.). (2020). Practical statistical learning and data science methods: Case studies from LISA 2020 global network, USA. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health Series.
Azur, M. J., Stuart, E. A., Frangakis, C., and Leaf, P. J. (2011). Multiple imputation by chained equations: what is it and how does it work? International Journal of Methods in Psychiatric Research, 20(1), 40–49. https://doi.org/10.1002/mpr.329.
Bader-El-Den, M., Teitei, E., & Perry, T. (2019). Biased random forest for dealing with the class imbalance problem. IEEE Transactions on Neural Networks and Learning Systems, 30(7), 2163–2172. https://doi.org/10.1109/TNNLS.2018.2878400.
Bajaj, G. (2024). Bagging Reduces Variance while Boosting Reduces Bias. Artificial Intelligence in Plain English.
Bao, L., Liu, Z., Yu, Y., and Zhang, W. (2018). On the decomposition property for a dynamic inventory rationing problem with multiple demand classes and backorder. European Journal of Operational Research, 265(1), 99-106. https://doi.org/10.1016/j.ejor.2017.07.021.
Batista, G. E. A. P. A., Prati, R. C., and Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1), 20–29. https://doi.org/10.1145/1007730.1007735.
Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University Press.
Belouch, M., & Hadaj, S. E. (2017). Comparison of ensemble learning methods applied to network intrusion detection. Proceedings of the 2nd International Conference on Big Data, Cloud and Applications (BDCA). Association for Computing Machinery. https://doi.org/10.1145/3018896.3065830.
Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-parameter optimization. In Proceedings of the 25th Annual Conference on Neural Information Processing Systems (NIPS). Retrieved from https://www.researchgate.net/publication/216816964.
Bergstra, J., and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, 281–305.
Bishop, C. M. (2013). Pattern recognition and machine learning. Springer.
Boctor, F. F., and Bolduc, M.-C. (2015). Inventory replenishment planning and staggering. IFAC-PapersOnLine, 48(3), 1416-1421. https://doi.org/10.1016/j.ifacol.2015.06.285.
Bouganim, J., and Olsson, K. (2019). Using deep learning to predict back orders: A study in the Volvo Group aftermarket supply chain. Linköping University. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157312.
Carbonneau, R., Vahidov, R., and Laframboise, K. (2008). Application of machine learning techniques for supply chain demand forecasting. European Journal of Operational Research, 184(3), 1140–1154.
Chakraborty, I., Roy, D., Garg, I., Ankit, A., and Roy, K. (2020). Constructing energy-efficient mixed-precision neural networks through principal component analysis for edge intelligence. Nature Machine Intelligence, 2(1), 43-55. https://doi.org/10.1038/s42256-019-0151-7.
Chan, S. W., Tasmin, R., Aziati, A. N., Rasi, R. Z., Ismail, F. B., and Yaw, L. P. (2017). Factors influencing the effectiveness of inventory management in manufacturing SMEs. IOP Conference Series: Materials Science and Engineering, 226(1), 012024. http://dx.doi.org/10.1088/1757-899X/226/1/012024.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321–357. https://doi.org/10.5555/1622407.1622416.
Chen, J., Huang, S., Hassin, R., and Zhang, N. (2015). Two backorder compensation mechanisms in inventory systems with impatient customers. Production and Operations Management, 24(10), 1640–1656. https://doi.org/10.1111/poms.12360.
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). New York, NY: Association for Computing Machinery. https://doi.org/10.1145/2939672.2939785.
Chinello, E., Herbert-Hansen, Z. N. L., and Khalid, W. (2019). Assessment of the impact of inventory optimization drivers in a multi-echelon supply chain: Case of a toy manufacturer. Computers and Industrial Engineering, 139, 106232. https://doi.org/10.1016/j.cie.2019.106232.
Datta, S., Sasso, A. M., Kiwit, N., Bose, S., Nadkarni, G., Miotto, R., & Böttinger, E. P. (2022). Predicting hypertension onset from longitudinal electronic health records with deep learning. JAMIA Open, 5(4), ooac097. https://doi.org/10.1093/jamiaopen/ooac097.
Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Luo, Z., Wamba, S. F., and Roubaud, D. (2019). Can big data and predictive analytics improve social and environmental sustainability? Technological Forecasting and Social Change, 144, 534–545. https://doi.org/10.1016/j.techfore.2017.06.020.
Dehghan-Bonari, E., Shajalal, M., Sharma, S., and Abiodun, O. I. (2021). Backorder prediction in inventory management: Classification techniques and cost considerations. International Journal of Supply Chain Management, 10(3), 56–67. https://doi.org/10.1016/j.scm.2021.07.012.
ElHafsi, M., Fang, J., and Hamouda, E. (2021). Optimal production and inventory control of multi-class mixed backorder and lost sales demand class models. European Journal of Operational Research, 291(1), 147-161.
Ezziane, H., Houassine, H., Moulahoum, S., & Chaouche, M. S. (2022). A novel method to identification type, location, and extent of transformer winding faults based on FRA and SMOTE-SVM. Russian Journal of Nondestructive Testing, 58(5), 391–404. https://doi.org/10.1134/S1061830922050047.
Feizabadi, J. (2020). Machine learning demand forecasting and supply chain performance. International Journal of Logistics Research and Applications, 1-24. https://doi.org/10.1080/13675567.2020.1850976.
Feurer, M., Springenberg, J., and Hutter, F. (2015). Initializing Bayesian hyperparameter optimization via meta-learning. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 29(1). https://doi.org/10.1609/aaai.v29i1.9354.
Fonseca, B., Nogueira, H., and Ravetti, G. (2019). A hybrid Lagrangian metaheuristic for the cross-docking flow shop scheduling problem. European Journal of Operational Research, 275(1), 139-154. https://doi.org/10.1016/j.ejor.2018.11.033.
Gaalman, G., Disney, S. M., and Wang, X. (2022). When bullwhip increases in the lead time: An eigenvalue analysis of ARMA demand. International Journal of Production Economics, 250, 108623. https://doi.org/10.1016/j.ijpe.2022.108623
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., and Herrera, F. (2012). A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews, 42(4), 463-484.
Gao, H., Ren, Q., Lv, C., et al. (2022). Supply chain management and backorder products prediction utilizing neural network and Naive Bayes machine learning techniques in big data area: A real-life case study. Preprint, Research Square. https://doi.org/10.21203/rs.3.rs-2020401/v1.
Garcia, Y., and Panduro, J. (2022, December). Use of a machine learning model for the reduction of backorders in the cross-docking sales process for the homecenter order service. Paper presented at the 1st Australian International Conference on Industrial Engineering and Operations Management. https://doi.org/10.46254/AU01.20220439.
Gaye, B., Zhang, D., & Wulamu, A. (2021). A Tweet Sentiment Classification Approach Using a Hybrid Stacked Ensemble Technique. Information, 12(9), 374. https://doi.org/10.3390/info12090374.
Ge, D., Pan, Y., Shen, Z.-J. (Max), Wu, D., Yuan, R., and Zhang, C. (2019). Retail supply chain management: A review of theories and practices. Journal of Data, Information and Management, 1(1), 45–64. https://doi.org/10.1007/s42488-019-00004-z.
GeeksforGeeks. (2024, September 10). Principal Component Analysis (PCA). https://www.geeksforgeeks.org/principal-component-analysis-pca/.
Goltsos, T. E., Syntetos, A. A., Glock, C. H., and Ioannou, G. (2022). Inventory – forecasting: Mind the gap. European Journal of Operational Research, 299(2), 397–419. https://doi.org/10.1016/j.ejor.2021.07.040.
Genton, M. (2001). Classes of kernels for machine learning: A statistics perspective. Journal of Machine Learning Research, 2, 299–312.
Guo, J., Wu, H., Chen, X., & Lin, W. (2024). Adaptive SV-Borderline SMOTE-SVM algorithm for imbalanced data classification. Applied Soft Computing, 150, 110986. https://doi.org/10.1016/j.asoc.2023.110986.
Hajek, P., and Abedin, M. Z. (2020). A profit function-maximizing inventory backorder prediction system using big data analytics. IEEE Access, 8, 58982-58994. https://doi.org/10.1109/ACCESS.2020.2983118.
Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In International Conference on Intelligent Computing (pp. 878–887). Springer.
He, H., and Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263-1284.
He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. 2008 IEEE International Joint Conference on Neural Networks (IJCNN), 1322–1328. https://doi.org/10.1109/IJCNN.2008.4633969.
Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2014). An efficient approach for assessing hyperparameter importance. Proceedings of the 31st International Conference on Machine Learning, Beijing, China. Retrieved from https://www.researchgate.net/publication/287850221_An_efficient_approach_for_assessing_hyperparameter_importance.
Iqbal, G. M. D., Rosenberger, M., Ha, L., Gregory, S., and Anoruo, E. (2023). Classification and regression tree model to predict the probability of a backorder in uncertain supply chain. International Journal of Supply Chain Management, 12(4). https://doi.org/10.59160/ijscm.v12i4.6199.
Islam, M., and Amin, M. (2020). Prediction of probable backorder scenarios in the supply chain using distributed random forest and gradient boosting machine learning techniques.
Jamaleddyn, I., El Ayachi, R., and Biniz, M. (2023). An improved approach to Arabic news classification based on hyperparameter tuning of machine learning algorithms. Journal of Economic Research, 35(1), Article 100061. https://doi.org/10.1016/j.jer.2023.100061.
Jolliffe, I. T., and Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202.
Kaur, R., & Singh, S. (2023). A comprehensive review of object detection with deep learning. Digital Signal Processing, 132, Article 103812. https://doi.org/10.1016/j.dsp.2022.103812.
Khan, A. A., Chaudhari, O., & Chandra, R. (2024). A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation, and evaluation. Expert Systems with Applications, 244, 122778. https://doi.org/10.1016/j.eswa.2023.122778.
Khan, M., Qayoom, A., Nizami, M., Siddiqui, M., Wasi, S., and Raazi, S. (2021). Automated prediction of good dictionary examples (GDEX): A comprehensive experiment with distant supervision, machine learning, and word embedding-based deep learning techniques. Complexity, 2021, 2553199. https://doi.org/10.1155/2021/2553199.
Kim, M., and Hwang, K.-B. (2022). An empirical evaluation of sampling methods for the classification of imbalanced data. PLoS ONE, 17(7), e0271260. https://doi.org/10.1371/journal.pone.0271260.
Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.
Lanjewar, M. G., and Panchbhai, K. G. (2024). Enhancing fish freshness prediction using NasNet-LSTM. Journal of Food Composition and Analysis, 127, 105945. https://doi.org/10.1016/j.jfca.2023.105945.
Hong, L., and Ping,W. (2007). Bullwhip effect analysis in supply chain for demand forecasting technology. Systems Engineering - Theory and Practice, 27(7), 26-33. https://doi.org/10.1016/S1874-8651(08)60044-7.
Lawal, S. O. and Akintola, K. G. (2021). A product backorder predictive model using recurrent neural network. Iconic Research And Engineering Journals, 4(8), 49–57.
Li, B., and Zhuang, X. (2020). Multiscale computation on feedforward neural network and recurrent neural network. Frontiers of Structural and Civil Engineering, 14(6), 1285–1298. https://doi.org/10.1007/s11709-020-0691-7.
Lopez, V., Fernandez, A., Garcia, S., Palade, V., and Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences, 250, 113-141. https://doi.org/10.1016/j.ins.2013.07.007.
Lundberg, M., Erion, G., Chen, H., DeGrave, A., Prutkin, M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56-67. https://doi.org/10.1038/s42256-019-0138-9.
Lundberg, S., and Lee, S.-I. (2017). A unified approach to interpreting model predictions. arXiv. https://doi.org/10.48550/arXiv.1705.07874.
Makki, S., Assaghir, Z., Taher, Y., Haque, R., Hacid, M.-S., & Zeineddine, H. (2019). An experimental study with imbalanced classification approaches for credit card fraud detection. IEEE Access, 7, 93010–93022. https://doi.org/10.1109/ACCESS.2019.2927266.
Maitra, S., and Kundu, S. (2023). Backorder prediction in inventory management: Classification techniques and cost considerations. Journal of Inventory Management and Logistics Research, 32(2), 104-117.
Mishra, U., Wu, J.-Z., and Sarkar, B. (2021). Optimum sustainable inventory management with backorder and deterioration under controllable carbon emissions. Journal of Cleaner Production, 279, 123699. https://doi.org/10.1016/j.jclepro.2020.123699.
Moshtagh, M., and Taleizadeh, A. (2017). Stochastic integrated manufacturing and remanufacturing model with shortage, rework, and quality-based return rate in a closed loop supply chain. Journal of Cleaner Production, 141, 1548–1573. https://doi.org/10.1016/j.jclepro.2016.09.173.
Namazkhan, M., Albers, C., and Steg, L. (2020). A decision tree method for explaining household gas consumption: The role of building characteristics, socio-demographic variables, psychological factors, and household behavior. Renewable and Sustainable Energy Reviews, 119, 109542. https://doi.org/10.1016/j.rser.2019.109542.
Ntakolia, C., Kokkotis, C., Karlsson, P., and Moustakidis, S. (2022). An explainable machine learning model for material backorder prediction in inventory management. Sensors, 21(23), 7926. https://doi.org/10.3390/s21237926.
Oluwaseyi, J. A., Onifade, M. K., and Odeyinka, O. F. (2017). Evaluation of the role of inventory management in logistics chain of an organisation. LOGI – Scientific Journal on Transport and Logistics, 8(2), 1–11.
Osama, S., Shaban, H., & Ali, A. A. (2023). Gene reduction and machine learning algorithms for cancer classification based on microarray gene expression data: A comprehensive review. Expert Systems with Applications, 213(Part A), Article 118946. https://doi.org/10.1016/j.eswa.2022.118946.
Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A. (2017, April). Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security (pp. 506-519). https://doi.org/10.1145/3052973.3053009.
Pérez-Padilla, N. A., Garcia-Sanchez, R., Avalos, O., Gálvez, J., Bian, M., Yu, L., Shu, Y., Feng, M., and Yelian, F. D. (2024). Optimizing trigger timing in minimal ovarian stimulation for in vitro fertilization using machine learning models with random search hyperparameter tuning. Computers in Biology and Medicine. https://doi.org/10.1016/j.compbiomed.2024.108856.
Pillai, V. M., and Pamulety, T. C. (2013). Impact of backorder on supply chain performance: An experimental study. Paper presented at the 7th IFAC Conference on Manufacturing Modelling, Management, and Control, Saint Petersburg, Russia.
Profillidis, V. A., and Botzoris, G. N. (2019). Artificial Intelligence—Neural Network Methods. In V. A. Profillidis and G. N. Botzoris (Eds.), Modeling of Transport Demand (pp. 353–382). Elsevier. https://doi.org/10.1016/C2016-0-04307-6.
Ryan, W. T., Christopher, R. W., Geoffrey, M. W., and Robin, K. M. (2021). Backorder prediction. https://apps.dtic.mil/sti/citations/AD1141471.
Rodger, J. A. (2014). Application of a fuzzy feasibility Bayesian probabilistic estimation of supply chain backorder aging, unfilled backorders, and customer wait time using stochastic simulation with Markov blankets. Expert Systems with Applications, 41(16), 7005-7022. https://doi.org/10.1016/j.eswa.2014.05.012.
Sadaiyandi, J., Arumugam, P., Sangaiah, A. K., & Zhang, C. (2023). Stratified sampling-based deep learning approach to increase prediction accuracy of unbalanced dataset. Electronics, 12(21), 4423. https://doi.org/10.3390/electronics12214423.
Sai, M. J., Chettri, P., Panigrahi, R., Garg, A., Bhoi, A. K., & Barsocchi, P. (2023). An ensemble of Light Gradient Boosting Machine and Adaptive Boosting for prediction of type-2 diabetes. International Journal of Computational Intelligence Systems, 16(1), Article 14. https://doi.org/10.1007/s44196-023-00184-y.
Samad, M. D., Abrar, S., and Diawara, N. (2022). Missing value estimation using clustering and deep learning within multiple imputation framework. Knowledge-Based Systems, 249, 108968. https://doi.org/10.1016/j.knosys.2022.108968.
Santis, R., Pestana de Aguiar, E., & Goliatt, L. (2017). Predicting material backorders in inventory management using machine learning. In Proceedings of the 4th IEEE Latin American Conference on Computational Intelligence (LA-CCI), Arequipa, Peru. https://doi.org/10.1109/LA-CCI.2017.8285684.
Satpathy, S. (2020). SMOTE for imbalanced classification with Python. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2020/10/overcoming-class-imbalance-using-smote-techniques/.
Seyedan, M., and Mafakheri, F. (2020). Predictive big data analytics for supply chain demand forecasting: Methods, applications, and research opportunities. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00329-2.
Shaik, M. E., Islam, M. M., and Hossain, Q. S. (2021). A review on neural network techniques for the prediction of road traffic accident severity. Asian Transport Studies, 7, 100040. https://doi.org/10.1016/j.eastsj.2021.100040.
Shajalal, M., Boden, A., and Stevens, G. (2022). Explainable product backorder prediction exploiting CNN: Introducing explainable models in businesses. Electronic Markets, 32(1). https://doi.org/10.1007/s12525-022-00599-z.
Shajalal, M., Hajek, P., and Abedin, M. Z. (2021). Product backorder prediction using deep neural network on imbalanced data. International Journal of Production Research, 61(1), 302-319. https://doi.org/10.1080/00207543.2022.2071212.
Shi, X., Bahnsen, A. C., and Munk, A. G. (2018). Leveraging domain knowledge in transfer learning: A case study of machine learning models for predicting backorders. Expert Systems with Applications, 106, 163-172. https://doi.org/10.1016/j.eswa.2018.04.006.
Shoeibi, A., Khodatars, M., Jafari, M., Ghassemi, N., Moridian, P., Alizadehsani, R., Ling, S. H., Khosravi, A., Alinejad-Rokny, H., Lam, H. K., Fuller-Tyszkiewicz, M., Acharya, U. R., Anderson, D., Zhang, Y., & Gorriz, J. M. (2023). Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review. Information Fusion, 93, 85–117. https://doi.org/10.1016/j.inffus.2022.12.010.
Smiti, S., & Soui, M. (2020). Bankruptcy prediction using a deep learning approach based on Borderline SMOTE. Information Systems Frontiers, 22(5), 1067–1083. https://doi.org/10.1007/s10796-020-10031-6.
Soni, B. (2021). Stacking to Improve Model Performance: A Comprehensive Guide on Ensemble Learning in Python. Medium.
Subramanian, N., Gunasekaran, A., Yu, K., Cheng, J., and Ning, K. (2014). Influence of performance measures on performance outcomes: A balanced scorecard perspective on the roles of cognition and emotional intelligence. International Journal of Production Research, 52(7), 2009–2025.
Sudharsan, M., and Thailambal, G. (2023). Alzheimer's disease prediction using machine learning techniques and principal component analysis (PCA). Materials Today: Proceedings, 81(Part 2), 182-190. https://doi.org/10.1016/j.matpr.2021.03.061.
Sundarakani, B., and Hamid, M. A. (2017). Big data driven supply chain analytics model for backorder prediction in manufacturing. Paper presented at the 8th IFAC Conference on Manufacturing Modelling, Management, and Control, Troyes, France. https://doi.org/10.1016/j.ifacol.2017.07.030.
Surendran, R. V., Arunachalam, M., and Muthulakshmi, A. (2019). Backorder prediction in inventory management systems using LSTM deep learning. Paper presented at the 2nd International Conference on Inventive Research in Computing Applications, Coimbatore, India. https://doi.org/10.1109/ICIRCA.2019.8899515.
Tan, X., & Lu, Q. (2021). Predicting supply chain backorder using data mining and machine learning techniques. In Proceedings of the 2021 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), Beijing, China. https://doi.org/10.1145/3465924.3465945.
Tang, Z., and Ge, Y. (2021). CNN model optimization and intelligent balance model for material demand forecast. International Journal of System Assurance Engineering and Management, 1-9. https://doi.org/10.1007/s13198-021-01157-0.
Thompson, P., and Psaraftis, H. N. (2019). Machine learning techniques in supply chain management: A systematic literature review. IFAC-PapersOnLine, 52(13), 1779-1785. https://doi.org/10.1016/j.ifacol.2019.11.426.
Tibshirani, R., Hastie, T., and Friedman, J. H. (2017). The elements of statistical learning (2nd ed.). Springer.
Umoh, U. A., Eyoh, I. J., Murugesan, V. S., & Nyoho, E. E. (2022). Fuzzy-machine learning models for the prediction of fire outbreaks: A comparative analysis. In Artificial Intelligence and Machine Learning for EDGE Computing (pp. 563–589). https://doi.org/10.1016/B978-0-12-824054-0.00025-3.
Vukovic, D. B., Spitsin, V., Bragin, A., Leonova, V., and Spitsina, L. (2024). Forecasting firm growth resumption post-stagnation. Journal of Open Innovation: Technology, Market, and Complexity, 100406. https://doi.org/10.1016/j.joitmc.2024.100406.
Wan, X., Britto, R., and Zhou, Z. (2020). In search of the negative relationship between product variety and inventory turnover. International Journal of Production Economics, 222, 107503. https://doi.org/10.1016/j.ijpe.2019.09.024.
Wang, D., and Tang, O. (2014). Dynamic inventory rationing with mixed backorders and lost sales. International Journal of Production Economics, 149, 56–67. https://doi.org/10.1016/j.ijpe.2013.10.004.
Wang, D., and Zhang, Y. (2020). Implications for sustainability in supply chain management and the circular economy using machine learning model. Information Systems and e-Business Management, 1-13. https://doi.org/10.1007/s10257-020-00492-9.
Wang, G., Gunasekaran, A., Ngai, E. W. T., and Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98–110. https://doi.org/10.1016/j.ijpe.2016.03.014.
Wang, K.-J., Adriana, A. M., Chen, K.-H., & Wang, K.-M. (2015). A hybrid classifier combining Borderline-SMOTE with AIRS algorithm for estimating brain metastasis from lung cancer: A case study in Taiwan. Computer Methods and Programs in Biomedicine, 119(1), 63–76. https://doi.org/10.1016/j.cmpb.2015.03.003.
Widodo, A., and Yang, B. S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 21(5), 2560–2574. https://doi.org/10.1016/j.ymssp.2006.12.007.
Xia, J., Jin, X., Yan, M., Cai, G., & Yan, J. (2018). Class weights random forest algorithm for processing class imbalanced medical data. IEEE Access, 6, 4641–4652. https://doi.org/10.1109/ACCESS.2018.2789428.
Yildiz, H., and Nezami, M. (2021). Integrated production and transportation planning in a supply chain with capacitated vehicles and multiple production modes. Transportation Research Part E: Logistics and Transportation Review, 152, 102389. https://doi.org/10.1016/j.tre.2021.102389.
Yu, K., Wang, X., Zhong, R., and Huang, G. Q. (2017). E-commerce logistics in supply chain management: Practice perspective. Procedia CIRP, 63, 851-856. https://doi.org/10.1016/j.procir.2017.03.327.
Zhang, M., Shi, L., Zhuo, X., and Liu, Y. (2021). A bullwhip effect weakening approach based on VMD-SVM algorithm under the background of intelligent manufacturing. Processes, 9(11), 1957. https://doi.org/10.3390/pr9111957.
Zhang, Y., and Chu, F. (2011). Backorder inventory model in stochastic demand environment. Paper presented at the 8th International Conference on Service Systems and Service Management, Tianjin, China. https://doi.org/10.1109/ICSSSM.2011.5959466.
Zhu, Y., and Rabinovich, E. (2021). Investigating the backorder behavior of e-commerce firms: Evidence from the software industry. Journal of Business Logistics, 42(1), 24-43. https://doi.org/10.1111/jbl.12281.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top