Login | Register

Advancing eHMI for powered wheelchairs beyond safety and communication: a pilot study on enriching social interaction through a co-design approach

Title:

Advancing eHMI for powered wheelchairs beyond safety and communication: a pilot study on enriching social interaction through a co-design approach

Rasoulivalajoozi, Mohsen and Farhoudi, Morteza (2025) Advancing eHMI for powered wheelchairs beyond safety and communication: a pilot study on enriching social interaction through a co-design approach. Transportation Research Part F: Traffic Psychology and Behaviour, 114 . pp. 200-215. ISSN 13698478

[thumbnail of 1-s2.0-S1369847825002001-main (1).pdf]
Preview
Text (application/pdf)
1-s2.0-S1369847825002001-main (1).pdf - Published Version
Available under License Creative Commons Attribution Non-commercial.
6MB

Official URL: https://doi.org/10.1016/j.trf.2025.05.036

Abstract

Background
Enhancing safety and communication while minimizing unwanted attention is key for wheelchair external Human-Machine Interfaces (eHMIs). This study aims to introduce an interface to enhance eHMIs for powered wheelchairs, improve external communication, and enhance positive social interactions in challenging urban situations.
Methods
A co-design approach was adopted, centering wheelchair users (WUs) in a two-step methodology. First, data were collected through a qualitative survey to define criteria, which informed themes for focus group discussions. These themes guided the ideation process. Eighteen participants, including WUs and experts in cognitive psychology, physiotherapy, and design, were involved. Concepts developed in ideation sessions were analyzed using the Analytic Hierarchy Process. A prototype was then developed to be assessed by both WUs and pedestrians through a structured questionnaire.
Results
According to the analysis, four themes were identified: I. Streamlined Information in Interaction, II. User-Centric Safety Feedback, III. Harmonious and Minimalist Interaction Design, and IV. Effortless Integration and Production. Regarding these themes, a table with design suggestions and implications was introduced. Ultimately, five interface concepts were proposed, with Concept 2, ‘WheelSafe Illumina’ (41.3%), and Concept 1, ‘WheelGlow Assist’ (28.1%) emerging as top priorities, both featuring a shell structure. Concept 2 was developed for prototyping. The feedback from the experiences of both WUs and pedestrians indicate that the proposed eHMI may enhance perceived communication and safety without drawing negative attention.
Conclusion
Integrating eHMI into a shell structure improves functional communication while also minimizing unwanted attention toward WUs—an often-overlooked issue in previous research that our co-design approach identified and effectively addressed.

Divisions:Concordia University > School of Graduate Studies > Individualized Program
Item Type:Article
Refereed:Yes
Authors:Rasoulivalajoozi, Mohsen and Farhoudi, Morteza
Contributors:Rasoulivalajoozi, Mohsen and Farhoudi, Morteza (Author, UNSPECIFIED)
Journal or Publication:Transportation Research Part F: Traffic Psychology and Behaviour
Date:October 2025
Funders:
  • No funding was received for this study.
Digital Object Identifier (DOI):10.1016/j.trf.2025.05.036
Keywords:Powered wheelchair; eHMI; Interface design; Intent communication; Interaction design; Social acceptance
ID Code:995632
Deposited By: Mohsen Rasoulivalajoozi
Deposited On:12 Jun 2025 17:21
Last Modified:12 Jun 2025 17:21
Related URLs:

References:

1. Dey, D.; Matviienko, A.; Berger, M.; Pfleging, B.; Martens, M.; Terken, J. Communicating the Intention of an Automated Vehicle to Pedestrians: The Contributions of eHMI and Vehicle Behavior. It - Inf. Technol. 2021, 63, 123–141, doi:10.1515/itit-2020-0025.
2. Zhang, X.; Song, Z.; Huang, Q.; Pan, Z.; Li, W.; Gong, R.; Zhao, B. Shared eHMI: Bridging Human–Machine Understanding in Autonomous Wheelchair Navigation. Appl. Sci. 2024, 14, 463, doi:10.3390/app14010463.
3. Frank, A.; Neophytou, C.; Frank, J.; de Souza, L. Electric-Powered Indoor/Outdoor Wheelchairs (EPIOCs): Users’ Views of Influence on Family, Friends and Carers. Disabil. Rehabil. Assist. Technol. 2010, 5, 327–338, doi:10.3109/17483101003746352.
4. Kim, K.; Kobayashi, H.; Matsumoto, K.; Hashimoto, T. Development of Train-Boarding Assistance Device for Wheelchair. J. Robot. Mechatron. 2022, 34, 167–176, doi:10.20965/jrm.2022.p0167.
5. Bizier, C.; Fawcett, G.; Gilbert, S. Mobility Disabilities among Canadians Aged 15 Years and Older, 2012 2016.
6. Dey, D.; Terken, J. Pedestrian Interaction with Vehicles | Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications.; 2017.
7. Henje, C.; Stenberg, G.; Lundälv, J.; Carlsson, A. Obstacles and Risks in the Traffic Environment for Users of Powered Wheelchairs in Sweden. Accid. Anal. Prev. 2021, 159, 106259, doi:10.1016/j.aap.2021.106259.
8. Dey, D.; Habibovic, A.; Löcken, A.; Wintersberger, P.; Pfleging, B.; Riener, A.; Martens, M.; Terken, J. Taming the eHMI Jungle: A Classification Taxonomy to Guide, Compare, and Assess the Design Principles of Automated Vehicles’ External Human-Machine Interfaces. Transp. Res. Interdiscip. Perspect. 2020, 7, 100174, doi:10.1016/j.trip.2020.100174.
9. Brandt, A.; Iwarsson, S.; Ståhle, A. Older People’s Use of Powered Wheelchairs for Activity and Participation. J. Rehabil. Med. 2004, 36, 70–77, doi:10.1080/16501970310017432.
10. Latané, B.; Darley, J.M. The Unresponsive Bystander: Why Doesn’t He Help?; New York, Appleton-Century Crofts, 1970;
11. Jiang, Q.; Zhuang, X.; Ma, G. Evaluation of External HMI in Autonomous Vehicles Based on Pedestrian Road Crossing Decision-Making Model. Adv. Psychol. Sci. 2022, 29, 1979–1992, doi:10.3724/SP.J.1042.2021.01979.
12. Dey, D.; van Vastenhoven, A.; Cuijpers, R.H.; Martens, M.; Pfleging, B. Towards Scalable eHMIs: Designing for AV-VRU Communication Beyond One Pedestrian. In Proceedings of the 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications; Association for Computing Machinery: New York, NY, USA, September 20 2021; pp. 274–286.
13. Wang, B.J.; Yang, C.H.; Gu, Z.Y. Smart Flashlight: Navigation Support for Cyclists. In Proceedings of the Design, User Experience, and Usability: Users, Contexts and Case Studies; Marcus, A., Wang, W., Eds.; Springer International Publishing: Cham, 2018; pp. 406–414.
14. Costa, V. de S.P.; Melo, M.R.A.C.; Garanhani, M.L.; Fujisawa, D.S. Social Representations of the Wheelchair for People with Spinal Cord Injury. Rev. Lat. Am. Enfermagem 2010, 18, 755–762, doi:10.1590/s0104-11692010000400014.
15. Barbareschi, G.; Daymond, S.; Honeywill, J.; Singh, A.; Noble, D.; N. Mbugua, N.; Harris, I.; Austin, V.; Holloway, C. Value beyond Function: Analyzing the Perception of Wheelchair Innovations in Kenya. In Proceedings of the Proceedings of the 22nd International ACM SIGACCESS Conference on Computers and Accessibility; Association for Computing Machinery: New York, NY, USA, October 29 2020; pp. 1–14.
16. Lanutti, J.N.L.; Medola, F.O.; Gonçalves, D.D.; da Silva, L.M.; Nicholl, A.R.J.; Paschoarelli, L.C. The Significance of Manual Wheelchairs: A Comparative Study on Male and Female Users. Procedia Manuf. 2015, 3, 6079–6085, doi:10.1016/j.promfg.2015.07.752.
17. Holländer, K.; Colley, M.; Rukzio, E.; Butz, A. A Taxonomy of Vulnerable Road Users for HCI Based On A Systematic Literature Review. In Proceedings of the Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, May 7 2021; pp. 1–13.
18. Lim, D.; Kim, B. UI Design of eHMI of Autonomous Vehicles. Int. J. Human–Computer Interact. 2022, 38, 1944–1961, doi:10.1080/10447318.2022.2061123.
19. Faas, S.M.; Mathis, L.-A.; Baumann, M. External HMI for Self-Driving Vehicles: Which Information Shall Be Displayed? Transp. Res. Part F Traffic Psychol. Behav. 2020, 68, 171–186, doi:10.1016/j.trf.2019.12.009.
20. Zhang, B.; Barbareschi, G.; Ramirez Herrera, R.; Carlson, T.; Holloway, C. Understanding Interactions for Smart Wheelchair Navigation in Crowds. In Proceedings of the Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, April 29 2022; pp. 1–16.
21. Eisma, Y.B.; van Bergen, S.; ter Brake, S.M.; Hensen, M.T.T.; Tempelaar, W.J.; de Winter, J.C.F. External Human–Machine Interfaces: The Effect of Display Location on Crossing Intentions and Eye Movements. Information 2020, 11, 13, doi:10.3390/info11010013.
22. Bazilinskyy, P.; Dodou, D.; de Winter, J. Survey on eHMI Concepts: The Effect of Text, Color, and Perspective. Transp. Res. Part F Traffic Psychol. Behav. 2019, 67, 175–194, doi:10.1016/j.trf.2019.10.013.
23. Rettenmaier, M.; Albers, D.; Bengler, K. After You?! – Use of External Human-Machine Interfaces in Road Bottleneck Scenarios. Transp. Res. Part F Traffic Psychol. Behav. 2020, 70, 175–190, doi:10.1016/j.trf.2020.03.004.
24. de Winter, J.; Dodou, D. External Human–Machine Interfaces: Gimmick or Necessity? Transp. Res. Interdiscip. Perspect. 2022, 15, 100643, doi:10.1016/j.trip.2022.100643.
25. Vlakveld, W.; van der Kint, S.; Hagenzieker, M.P. Cyclists’ Intentions to Yield for Automated Cars at Intersections When They Have Right of Way: Results of an Experiment Using High-Quality Video Animations. Transp. Res. Part F Traffic Psychol. Behav. 2020, 71, 288–307, doi:10.1016/j.trf.2020.04.012.
26. Carmona, J.; Guindel, C.; Garcia, F.; de la Escalera, A. eHMI: Review and Guidelines for Deployment on Autonomous Vehicles. Sensors 2021, 21, 2912, doi:10.3390/s21092912.
27. Chang, C.-M.; Toda, K.; Sakamoto, D.; Igarashi, T. Eyes on a Car: An Interface Design for Communication between an Autonomous Car and a Pedestrian. In Proceedings of the Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications; Association for Computing Machinery: New York, NY, USA, September 24 2017; pp. 65–73.
28. Habibovic, A.; Lundgren, V.M.; Andersson, J.; Klingegård, M.; Lagström, T.; Sirkka, A.; Fagerlönn, J.; Edgren, C.; Fredriksson, R.; Krupenia, S.; et al. Communicating Intent of Automated Vehicles to Pedestrians. Front. Psychol. 2018, 9.
29. Watanabe, A.; Ikeda, T.; Morales, Y.; Shinozawa, K.; Miyashita, T.; Hagita, N. Communicating Robotic Navigational Intentions. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); September 2015; pp. 5763–5769.
30. Blach Rossen, C.; Sørensen, B.; Würtz Jochumsen, B.; Wind, G. Everyday Life for Users of Electric Wheelchairs – a Qualitative Interview Study. Disabil. Rehabil. Assist. Technol. 2012, 7, 399–407, doi:10.3109/17483107.2012.665976.
31. Barbareschi, G.; Carew, M.T.; Johnson, E.A.; Kopi, N.; Holloway, C. “When They See a Wheelchair, They’ve Not Even Seen Me”-Factors Shaping the Experience of Disability Stigma and Discrimination in Kenya. Int. J. Environ. Res. Public. Health 2021, 18, 4272, doi:10.3390/ijerph18084272.
32. Rasoulivalajoozi, M.; Cucuzzella, C.; Farhoudi, M. Perceived Inclusivity in Mobility Aids Use: A Qualitative Study in Iran. Disabilities 2025, 5, 15, doi:10.3390/disabilities5010015.
33. Asha, A.Z.; Smith, C.; Freeman, G.; Crump, S.; Somanath, S.; Oehlberg, L.; Sharlin, E. Co-Designing Interactions between Pedestrians in Wheelchairs and Autonomous Vehicles. In Proceedings of the Designing Interactive Systems Conference 2021; New York, NY, USA, June 28 2021; pp. 339–351.
34. Carneiro, L.; Rebelo, F.; Noriega, P.; Faria Pais, J. Could the Design Features of a Wheelchair Influence the User Experience and Stigmatization Perceptions of the Users? In Proceedings of the Advances in Ergonomics in Design; Rebelo, F., Soares, M., Rebelo, F., Soares, M., Eds.; Cham, 2017; pp. 841–850.
35. Mokdad, M.; Mebarki, B.; Bouabdellah, L.; Mokdad, I. Emotional Responses of the Disabled Towards Wheelchairs. In Proceedings of the Advances in Affective and Pleasurable Design; Chung, W., Shin, C.S., Eds.; Springer International Publishing: Cham, 2018; pp. 86–96.
36. Faraji, A.; Valajoozi, M.R. Interactive Foot Orthosis (IFO) for People with Drop Foot. Appl. Mech. Mater. 2014, 464, 129–134, doi:10.4028/www.scientific.net/AMM.464.129.
37. Zhang, B.; Barbareschi, G.; Ramirez Herrera, R.; Carlson, T.; Holloway, C. Understanding Interactions for Smart Wheelchair Navigation in Crowds. In Proceedings of the Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, April 29 2022; pp. 1–16.
38. O.Nyumba, T.; Wilson, K.; Derrick, C.J.; Mukherjee, N. The Use of Focus Group Discussion Methodology: Insights from Two Decades of Application in Conservation. Methods Ecol. Evol. 2018, 9, 20–32, doi:10.1111/2041-210X.12860.
39. Tong, A.; Sainsbury, P.; Craig, J. Consolidated Criteria for Reporting Qualitative Research (COREQ): A 32-Item Checklist for Interviews and Focus Groups. Int. J. Qual. Health Care 2007, 19, 349–357, doi:10.1093/intqhc/mzm042.
40. Vaidya, O.S.; Kumar, S. Analytic Hierarchy Process: An Overview of Applications. Eur. J. Oper. Res. 2006, 169, 1–29, doi:10.1016/j.ejor.2004.04.028.
41. Bertelsen, O.W.; Pold, S. Criticism as an Approach to Interface Aesthetics. In Proceedings of the Proceedings of the third Nordic conference on Human-computer interaction; Association for Computing Machinery: New York, NY, USA, October 23 2004; pp. 23–32.
42. Rasouli Valajoozi, M.; Zangi, N.O. A Review on Visual Criteria of Pure Milk Packaging for Parents and Their Children (Case Study: Tehran, Iran). Br. Food J. 2016, 118, 83–99, doi:10.1108/BFJ-12-2014-0425.
43. Cucuzzella, C.; Rasoulivalajoozi, M.; Farzamfar, G. Spatial Experience of Cancer Inpatients in the Oncology Wards: A Qualitative Study in Visual Design Aspects. Eur. J. Oncol. Nurs. 2024, 70, 102552, doi:10.1016/j.ejon.2024.102552.
44. Asana Affinity Diagram: How to Organize Information Available online: https://asana.com/resources/affinity-diagram (accessed on 9 August 2024).
45. Braun, V.; Clarke, V. Thematic Analysis. In APA handbook of research methods in psychology, Vol 2: Research designs: Quantitative, qualitative, neuropsychological, and biological; APA handbooks in psychology®; American Psychological Association: Washington, DC, US, 2012; pp. 57–71 ISBN 978-1-4338-1005-3.
46. Kudrowitz, B.; Te, P.; Wallace, D. The Influence of Sketch Quality on Perception of Product-Idea Creativity. AI EDAM 2012, 26, 267–279, doi:10.1017/S0890060412000145.
47. Braun, V.; Clarke, V. Conceptual and Design Thinking for Thematic Analysis. Qual. Psychol. 2022, 9, 3–26, doi:10.1037/qup0000196.
48. Spicelogic Analytic Hierarchy Process Step by Step Approach and Example Available online: https://www.spicelogic.com/docs/ahpsoftware (accessed on 2 September 2023).
49. Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley & Sons, 1999; ISBN 978-0-471-32944-2.
50. Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of Fuzzy Logic and Analytical Hierarchy Process (AHP) to Landslide Susceptibility Mapping at Haraz Watershed, Iran. Nat. Hazards 2012, 63, 965–996, doi:10.1007/s11069-012-0217-2.
51. Brooke, john SUS: A “Quick and Dirty” Usability Scale. In Usability Evaluation In Industry; CRC Press, 1996 ISBN 978-0-429-15701-1.
52. Rahman, M.M.; Lesch, M.F.; Horrey, W.J.; Strawderman, L. Assessing the Utility of TAM, TPB, and UTAUT for Advanced Driver Assistance Systems. Accid. Anal. Prev. 2017, 108, 361–373, doi:10.1016/j.aap.2017.09.011.
53. Munodawafa, D. Communication: Concepts, Practice and Challenges. Health Educ. Res. 2008, 23, 369–370, doi:10.1093/her/cyn024.
54. Report on International Consumer Product Safety Risk Assessment Practices 2016.
55. Hekkert, P.; Leder, H. 10 - PRODUCT AESTHETICS. In Product Experience; Schifferstein, H.N.J., Hekkert, P., Eds.; Elsevier: San Diego, 2008; pp. 259–285 ISBN 978-0-08-045089-6.
56. Rasoulivalajoozi, M.; Cucuzzella, C.; Farhoudi, M. The Dynamics of Affective Experiences with Wheelchair Use during Rehabilitation: A Qualitative Study through Physiotherapists’ Perspectives. Acta Psychol. (Amst.) 2025, 256, 105022, doi:10.1016/j.actpsy.2025.105022.
57. Simplilearn Feasibility Study and Its Importance in Project Management Available online: https://www.simplilearn.com/feasibility-study-article (accessed on 1 August 2023).
58. Isoardi, G. Explainer: The Doppler Effect Available online: http://theconversation.com/explainer-the-doppler-effect-7475 (accessed on 2 October 2023).
59. Hernández, R.J.; Cooper, R.; Tether, B.; Murphy, E. Design, the Language of Innovation: A Review of the Design Studies Literature. She Ji J. Des. Econ. Innov. 2018, 4, 249–274, doi:10.1016/j.sheji.2018.06.001.
60. Lidwell, W.; Holden, K.; Butler, J. Universal Principles of Design: 125 Ways to Enhance Usability, Influence Perception, Increase Appeal, Make Better Design Decisions, and Teach through Design; [25 Additional Design Principles]; rev. and updated.; Rockport Publ: Beverly, Mass, 2010; ISBN 978-1-59253-587-3.
61. Farshad, M. Design and Analysis of Shell Structures; Solid Mechanics and Its Applications; Springer Netherlands: Dordrecht, 1992; Vol. 16; ISBN 978-90-481-4200-2.
62. Sharma, P. Shell Structures: Introduction, Benefits, Types & Examples Available online: https://www.novatr.com/blog/shell-structures (accessed on 17 January 2025).
63. Rasoulivalajoozi, M.; Farhoudi, M. Integrating User Perceptions of Socio-Emotional Aspects in Wheelchair Design: A Pilot Study Using Kansei Engineering. J. Transp. Health 2025, 42, 102002, doi:10.1016/j.jth.2025.102002.
64. Rasoulivalajoozi, M.; Cucuzzella, C.; Farhoudi, M. Domains of Wheelchair Users’ Socio-Emotional Experiences: Design Insights from a Scoping Review. Disabil. Health J. 2025, 101829, doi:10.1016/j.dhjo.2025.101829.
65. Detjen, H.; Salini, M.; Kronenberger, J.; Geisler, S.; Schneegass, S. Towards Transparent Behavior of Automated Vehicles: Design and Evaluation of HUD Concepts to Support System Predictability Through Motion Intent Communication. In Proceedings of the Proceedings of the 23rd International Conference on Mobile Human-Computer Interaction; Association for Computing Machinery: New York, NY, USA, September 27 2021; pp. 1–12.
66. Dey, D. External Communication for Self-Driving Cars: Designing for Encounters between Automated Vehicles and Pedestrians. Phd Thesis 1 (Research TU/e / Graduation TU/e), Technische Universiteit Eindhoven: Eindhoven, 2020.
67. Mahadevan, K.; Somanath, S.; Sharlin, E. Communicating Awareness and Intent in Autonomous Vehicle-Pedestrian Interaction. In Proceedings of the Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, April 21 2018; pp. 1–12.
68. Towards Inclusive External Communication of Autonomous Vehicles for Pedestrians with Vision Impairments | Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems Available online: https://dl.acm.org/doi/abs/10.1145/3313831.3376472 (accessed on 26 April 2024).
69. Morales, Y.; Watanabe, A.; Ferreri, F.; Even, J.; Ikeda, T.; Shinozawa, K.; Miyashita, T.; Hagita, N. Including Human Factors for Planning Comfortable Paths. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA); May 2015; pp. 6153–6159.
70. de Winter, J.; Dodou, D. External Human–Machine Interfaces: Gimmick or Necessity? Transp. Res. Interdiscip. Perspect. 2022, 15, 100643, doi:10.1016/j.trip.2022.100643.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top