Campanella, Alessandro (2025) Entanglements of Galois Representations for Elliptic Curves over Q: Foundations and Future Directions. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
1MBCampanella_MA_F2025.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
This thesis investigates the non-surjectivity of adelic Galois representations associated with elliptic curves over Q, a phenomenon explained by two forms of entanglement. We introduce and differentiate between vertical and horizontal entanglements, providing a group-theoretic perspective on the latter. We also develop the concept of 'entanglement networks', diagrams derived from a theorem on field intersections, which offer a framework for analyzing these phenomena and suggest avenues for future combinatorial and cryptographic study. Computationally, we address the classification of potential mod-n Galois images by providing SageMath code to compute all applicable subgroups of GL_2(Z/nZ) for any n. Further SageMath implementations are presented to compute relevant entanglements for a given elliptic curve, utilizing data from the LMFDB database. Finally, we present a theorem providing conditions for the surjectivity of mod-n Galois representations, linking it to the surjectivity of mod-p representations for prime factors p of n and a constant related to Serre's work.
| Divisions: | Concordia University > Faculty of Arts and Science > Mathematics and Statistics |
|---|---|
| Item Type: | Thesis (Masters) |
| Authors: | Campanella, Alessandro |
| Institution: | Concordia University |
| Degree Name: | M.A. |
| Program: | Mathematics |
| Date: | 20 August 2025 |
| Thesis Supervisor(s): | Rosso, Giovanni and Pagano, Carlo |
| Keywords: | Elliptic Curves Galois Representations Horizontal Entanglement Adelic Representation Division Fields Complex Multiplication Entanglement Networks SageMath |
| ID Code: | 996063 |
| Deposited By: | Alessandro Campanella |
| Deposited On: | 04 Nov 2025 17:04 |
| Last Modified: | 04 Nov 2025 17:04 |
| Related URLs: |
References:
Jean-Pierre Serre. “Propriétés galoisiennes des points d’ordre fini des courbes elliptiques”. In: Inventiones Mathematicae 15.4 (1972), pp. 259–331. doi: 10.1007/BF01405086.Keith Conrad. “The Galois Correspondence”. Expository notes available online. No date provided. url: https://kconrad.math.uconn.edu/blurbs/galoistheory/
galoiscorr.pdf (visited on 10/27/2023).
David S. Dummit and Richard M. Foote. Abstract algebra. Third. John Wiley & Sons, Inc., Hoboken, NJ, 2004, pp. xii+932. isbn: 0-471-43334-9.
Derek J. S. Robinson. A course in the theory of groups. Second. Vol. 80. Graduate Texts in Mathematics. Springer-Verlag, New York, 1996, pp. xviii+499. isbn: 0-387-94461-3. doi: 10.1007/978-1-4419-8594-1. url: https://doi.org/10.1007/978-1-4419-8594-1.
Gareth Wilkes. “Part III Profinite Groups”. Expository notes available online. No date provided. url: https://www.dpmms.cam.ac.uk/~grw46/LectureNotes.pdf (visited on 10/27/2023).
Keith Conrad. “Infinite Galois Theory”. Expository notes available online. No date provided. url: https : / / ctnt - summer . math . uconn . edu / wp - content / uploads /sites/1632/2020/06/CTNT-InfGaloisTheory.pdf (visited on 10/27/2023).
James S. Milne. “Fields and Galois Theory”. Version 4.62. 2021. url: https://www.jmilne.org/math/CourseNotes/FT.pdf (visited on 10/26/2023).
Joseph H. Silverman. The Arithmetic of Elliptic Curves. Second. Vol. 106. Graduate Texts in Mathematics. New York: Springer, 2009. isbn: 978-0387094939.
Robin Hartshorne. Algebraic Geometry. Vol. 52. Graduate Texts in Mathematics. NewYork: Springer-Verlag, 1977. isbn: 978-0387902449.
Joseph H. Silverman and John T. Tate. Rational Points on Elliptic Curves. Second. Undergraduate Texts in Mathematics. Cham: Springer International Publishing, 2015. isbn: 978-3319185873.
Ernst Kani. “On the Surjectivity of Galois Representations Associated to Elliptic Curves”. Preprint available online. Mar. 2004. url: https : / / mast . queensu . ca /~kani/papers/surjective-mar03.pdf (visited on 10/27/2023).
Bertram Huppert. Endliche Gruppen I. Vol. 134. Die Grundlehren der mathematischen Wissenschaften. Berlin-New York: Springer-Verlag, 1967.
Keith Conrad. “Semidirect Products”. Expository notes available online. No date provided. url:
https://kconrad.math.uconn.edu/blurbs/grouptheory/semidirect-product.pdf (visited on 10/27/2023).
Keith Conrad. “SL(2,Z)”. Expository notes available online. No date provided. url: https://kconrad.math.uconn.edu/blurbs/grouptheory/SL(2,Z).pdf (visited on 10/27/2023).
Jean-Pierre Serre. Abelian ℓ-adic Representations and Elliptic Curves. Based on lectures given at McGill University, 1967. New York-Amsterdam: W. A. Benjamin, Inc.,1968.
Hans Kurzweil and Bernd Stellmacher. The Theory of Finite Groups: An Introduction. Universitext. New York: Springer-Verlag, 2004. isbn: 0-387-40510-0.
Leonard Eugene Dickson. Linear Groups with an Exposition of Galois Field Theory. Reprint of the 1901 original published by B. G. Teubner. Cosimo Classics, Lightning Source Incorporated, 2007. isbn: 978-1602062939.
John F. Humphreys. A Course in Group Theory. Oxford: Oxford University Press,1996. isbn: 978-0198534594.
David Zywina. Elliptic Curves with Maximal Galois Action on their Torsion Points. 2008. arXiv: 0809.3482 [math.NT].
David Zywina. “On the Possible Images of the mod ℓ Representations Associated to Elliptic Curves over Q”. In: Transactions of the American Mathematical Society 367.10 (2015), pp. 6977–7015.
Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptography. 2nd. Discrete Mathematics and Its Applications. Boca Raton, FL: Chapman and Hall/CRC, 2008. isbn: 978-1420071467.
Nathan Jones. A Bound for the Conductor of an Open Subgroup of GL2 Associated to an Elliptic Curve. 2019. arXiv: 1904.10431 [math.NT].
David Zywina. Explicit Open Images for Elliptic Curves over Q. 2022. arXiv: 2206.14959 [math.NT].
Julio Brau Avila. “Galois Representations of Elliptic Curves and Abelian Entanglements”. Doctoral Thesis. Leiden University, Dec. 2015. url: https://scholarlypublications. universiteitleiden.nl/handle/1887/37019.
Noam D. Elkies. Elliptic curves with 3-adic Galois representation surjective mod 3 but not mod 9. 2006. arXiv: math/0612734 [math.NT].
Nathan Jones. Almost all elliptic curves are Serre curves. 2006. arXiv: math/0611096 [math.NT].
Andrew V. Sutherland. Computing images of Galois representations attached to elliptic curves. 2015. arXiv: 1504.07618 [math.NT].
Jeremy Rouse and David Zureick-Brown. Elliptic curves over Q and 2-adic images of Galois. 2014. arXiv: 1402.5997 [math.NT].
Harris B. Daniels, Alvaro Lozano-Robledo, and Jackson S. Morrow. Towards a classification of entanglements of Galois representations attached to elliptic curves. 2021. arXiv: 2105.02060 [math.NT].
Clemens Adelmann. The decomposition of primes in torsion point fields. Vol. 1761. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2001, pp. vi+142. isbn: 3-540- 42035-5. doi: 10.1007/b80624. url: https://doi.org/10.1007/b80624.
Tim Dokchitser and Vladimir Dokchitser. Surjectivity of mod 2n representations of elliptic curves. 2011. arXiv: 1104.5031 [math.NT].
Joost Mein. “Entanglements of Galois representations of elliptic curves over Q”. Master’s Thesis. Utrecht University, Aug. 2022. url: https://studenttheses.uu.nl/bitstream/handle/20.500.12932/42532/Entanglement.pdf?sequence=1 (visited on 10/27/2023).
Harris B. Daniels and Jackson S. Morrow. “A group theoretic perspective on entanglements of division fields”. In: Trans. Amer. Math. Soc. Ser. B 9 (2022), pp. 827–858. issn: 2330-0000. doi: 10.1090/btran/95. url: https://doi.org/10.1090/btran/95.
Abbey Bourdon, Pete L. Clark, and James Stankewicz. Torsion Points on CM Elliptic Curves Over Real Number Fields. 2015. arXiv: 1411.2742 [math.NT].
Patrick Morandi. Field and Galois Theory. Vol. 167. Graduate Texts in Mathematics. New York: Springer-Verlag, 1996. isbn: 978-0-387-94753-2. doi: 10 . 1007 / 978 - 1 - 4612-4040-3.
Andrew V. Sutherland and David Zywina. “Modular curves of prime-power level with infinitely many rational points”. In: Algebra Number Theory 11.5 (2017), pp. 1199–1229. doi: 10.2140/ant.2017.11.1199.
Andrew V. Sutherland and David Zywina. GL2Invariants.m: MAGMA code for sub-group invariants. GitHub repository. Accessed: 2025-07-01. 2017. url: https : / /
github.com/jmorrow4692/Entanglements/blob/master/AuxillaryFiles/%5 SZ17%5D/GL2Invariants.m.
Enrique Gonz´alez-Jim´enez and Alvaro Lozano-Robledo. Elliptic Curves with abelian division fields. 2015. arXiv: 1511.08578 [math.NT].
Repository Staff Only: item control page


Download Statistics
Download Statistics