Breadcrumb

 
 

Xenohormetic, hormetic and cytostatic selective forces driving longevity at the ecosystemic level

Title:

Xenohormetic, hormetic and cytostatic selective forces driving longevity at the ecosystemic level

Goldberg, Alexander A. and Kyryakov, Pavlo and Bourque, Simon D. and Titorenko, Vladimir I. (2010) Xenohormetic, hormetic and cytostatic selective forces driving longevity at the ecosystemic level. Aging, 2 (8). pp. 461-470. ISSN 1945-4589

[img]
Preview
PDF - Published Version
2103Kb

Official URL: http://impactaging.com/papers/v2/n8/full/100186.ht...

Abstract

We recently found that lithocholic acid (LCA), a bile acid, extends yeast longevity. Unlike mammals, yeast do not synthesize bile acids. We therefore propose that bile acids released into the environment by mammals may act as interspecies chemical signals providing longevity benefits to yeast and, perhaps, other species within an ecosystem.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Article
Refereed:Yes
Authors:Goldberg, Alexander A. and Kyryakov, Pavlo and Bourque, Simon D. and Titorenko, Vladimir I.
Journal or Publication:Aging
Date:August 2010
Keywords:Aging, longevity, evolution, ecosystems, hormesis, xenohormesis, link between growth and aging, quasi-programmed aging, anti-aging compounds, resveratrol, rapamycin, bile acids
ID Code:6999
Deposited By:DANIELLE DENNIE
Deposited On:18 Jan 2011 14:41
Last Modified:18 Jan 2011 14:41
References:
Goldberg AA et al. Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes. Aging 2010; 2: 393-414.

Greer EL, Brunet A. Signaling networks in aging. J Cell Sci. 2008; 121: 407-412.

Blagosklonny MV, Hall MN. Growth and aging: a common molecular mechanism. Aging 2009; 1: 357-362.

Hands SL, Proud CG, Wyttenbach A. mTOR's role in ageing: protein synthesis or autophagy? Aging 2009; 1: 586-597.

Narasimhan SD, Yen K, Tissenbaum HA. Converging pathways in lifespan regulation. Curr Biol. 2009; 19: R657-R666.

Fontana L, Partridge L, Longo VD. Extending healthy life span - from yeast to humans. Science 2010; 328: 321-326.

Smets B, Ghillebert R, De Snijder P, Binda M, Swinnen E, De Virgilio C, Winderickx J. Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet. 2010; 56: 1-32.

Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N et al. Global analysis of protein phosphorylation in yeast. Nature 2005; 438: 679-684.

Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008; 7: 678-693.

Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res. 2009; 50: 1509-1520.

Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009; 89: 147-191.

Ramalho RM, Viana RJ, Low WC, Steer CJ, Rodrigues CM. Bile acids and apoptosis modulation: an emerging role in experimental Alzheimer's disease. Trends Mol. Med. 2008; 14: 54-62.

Amaral JD, Viana RJ, Ramalho RM, Steer CJ, Rodrigues CM. Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res. 2009; 50: 1721-1734.

Vallim TQ, Edwards PA. Bile acids have the gall to function as hormones. Cell Metab. 2009; 10: 162-164.

Amador-Noguez D, Yagi K, Venable S, Darlington G. Gene expression profile of long-lived Ames dwarf mice and Little mice. Aging Cell 2004; 3: 423-441.

Amador-Noguez D, Dean A, Huang W, Setchell K, Moore D, Darlington G. Alterations in xenobiotic metabolism in the long-lived Little mice. Aging Cell 2007; 6: 453-470.

Gems D. Long-lived dwarf mice: are bile acids a longevity signal? Aging Cell 2007; 6: 421-423.

Gems D, Partridge L. Stress-response hormesis and aging: "that which does not kill us makes us stronger". Cell Metab. 2008; 7: 200-203.

Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 2006; 124: 1209-1223.

Gerisch B, Rottiers V, Li D, Motola DL, Cummins CL, Lehrach H, Mangelsdorf DJ, Antebi A. A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling. Proc Natl Acad Sci USA 2007; 104: 5014-5019.

Russell SJ, Kahn CR. Endocrine regulation of ageing. Nat Rev Mol Cell Biol. 2007; 8: 681-691.

Monte MJ, Marin JJ, Antelo A, Vazquez-Tato J. Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol. 2009; 15: 804-816.

Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 2006; 20: 174-184.

Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009; 460: 392-395.

Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J,Foley A, Partridge L. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010; 11: 35-46.

Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124: 471-484.

Dann SG, Thomas G. The amino acid sensitive TOR pathway from yeast to mammals. FEBS Lett. 2006; 580: 2821-2829.

Heeren G, Rinnerthaler M, Laun P, von Seyerl P, Kössler S, Klinger H, Jarolim S, Simon-Nobbe B, Hager M, Schüller C, Carmona-Gutierrez D, Breitenbach-Koller L, Mück C, Jansen-Dürr P, Criollo A, Kroemer G, Madeo F, Breitenbach M. The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging 2009; 1: 622-636.

Ralser M, Lehrach H. Building a new bridge between metabolism, free radicals and longevity. Aging 2009; 1: 836-838.

Butow RA, Avadhani NG. Mitochondrial signaling: the retrograde response. Mol Cell 2004; 14: 1-15.

Jazwinski SM. Rtg2 protein: at the nexus of yeast longevity and aging. FEMS Yeast Res. 2005; 5: 1253-1259.

Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425: 191-196.

Howitz KT, Sinclair DA. Xenohormesis: sensing the chemical cues of other species. Cell 2008; 133: 387-391.
Lamming DW, Wood JG, Sinclair DA. Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol. 2004; 53: 1003-1009.

Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444: 337-342.

Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA 2007; 104: 7217-7222.

Armour SM, Baur JA, Hsieh SN, Land-Bracha A, Thomas SM, Sinclair DA. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy. Aging 2009; 1: 515-528.

Demidenko ZN, Blagosklonny MV. At concentrations that inhibit mTOR, resveratrol suppresses cellular senescence. Cell Cycle 2009; 8: 1901-1904.

Blagosklonny MV. Inhibition of S6K by resveratrol: in search of the purpose. Aging 2009; 1: 511-514.

Morselli E, Galluzzi L, Kepp O, Criollo A, Maiuri MC, Tavernarakis N, Madeo F, Kroemer G. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol. Aging 2009; 1: 961-970.

Shakibaei M, Harikumar KB, Aggarwal BB. Resveratrol addiction: to die or not to die. Mol Nutr Food Res. 2009; 53: 115-128.

Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaris K, Galluzzi L, Criollo A, Malik SA, Madeo F, Tavernarakis N, Kroemer G. Caloric restriction and resveratrol prolong longevity via the sirtuin-1 dependent induction of autophagy. Cell Death Disease 2010; 1: e10.

Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R, De Virgilio C. Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol. 2008; 69: 277-285.

Blagosklonny MV. Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle 2006; 5: 2087-2102.

Blagosklonny MV. Rapamycin and quasi-programmed aging: Four years later. Cell Cycle 2010; 9: 1859-1862.

Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot. 1975; 28: 721-726.

Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou LL, Diaspro A, Dossen JW, Gralla EB, Longo VD. Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol. 2004; 166:1055-1067.

Herker E, Jungwirth H, Lehmann KA, Maldener C, Frohlich KU, Wissing S, Buttner S, Fehr M, Sigrist S, Madeo F. Chronological aging leads to apoptosis in yeast. J Cell Biol. 2004; 164: 501-507.

Longo VD, Mitteldorf J, Skulachev VP. Programmed and altruistic ageing. Nat Rev Genet. 2005; 6: 866-872.

Vachova L, Palkova Z. Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J Cell Biol. 2005; 169: 711-717.

Büttner S, Eisenberg T, Herker E, Carmona-Gutierrez D, Kroemer G, Madeo F. Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J Cell Biol. 2006; 175: 521-525.

Severin FF, Meer MV, Smirnova EA, Knorre DA, Skulachev VP. Natural causes of programmed death of yeast Saccharomyces cerevisiae. Biochim Biophys Acta 2008; 1783: 1350-1353.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Document Downloads

More statistics for this item...

Concordia University - Footer