Login | Register

The verification of MDG algorithms in the HOL theorem prover

Title:

The verification of MDG algorithms in the HOL theorem prover

Abed, Sa'ed Rasmi H (2008) The verification of MDG algorithms in the HOL theorem prover. PhD thesis, Concordia University.

[thumbnail of NR42548.pdf]
Preview
Text (application/pdf)
NR42548.pdf - Accepted Version
2MB

Abstract

Formal verification of digital systems is achieved, today, using one of two main approaches: states exploration (mainly model checking and equivalence checking) or deductive reasoning (theorem proving). Indeed, the combination of the two approaches, states exploration and deductive reasoning promises to overcome the limitation and to enhance the capabilities of each. Our research is motivated by this goal. In this thesis, we provide the entire necessary infrastructure (data structure + algorithms) to define high level states exploration in the HOL theorem prover named as MDG-HOL platform. While related work has tackled the same problem by representing primitive Binary Decision Diagram (BDD) operations as inference rules added to the core of the theorem prover, we have based our approach on the Multiway Decision Graphs (MDGs). MDG generalizes ROBDD to represent and manipulate a subset of first-order logic formulae. With MDGs, a data value is represented by a single variable of an abstract type and operations on data are represented in terms of uninterpreted function. Considering MDGs instead of BDDs will raise the abstraction level of what can be verified using a state exploration within a theorem prover. The MDGs embedding is based on the logical formulation of an MDG as a Directed Formulae (DF). The DF syntax is defined as HOL built-in data types. We formalize the basic MDG operations using this syntax within HOL following a deep embedding approach. Such approach ensures the consistency of our embedding. Then, we derive the correctness proof for each MDG basic operator. Based on this platform, the MDG reachability analysis is defined in HOL as a conversion that uses the MDG theory within HOL. Then, we demonstrate the effectiveness of our platform by considering four case studies. Our obtained results show that this verification framework offers a considerable gain in terms of automation without sacrificing CPU time and memory usage compared to automatic model checker tools. Finally, we propose a reduction technique to improve MDGs model checking based on the MDG-HOL platform. The idea is to prune the transition relation of the circuits using pre-proved theorems and lemmas from the specification given at system level. We also use the consistency of the specifications to verify if the reduced model is faithful to the original one. We provide two case studies, the first one is the reduction using SAT-MDG of an Island Tunnel Controller and the second one is the MDG-HOL assume-guarantee reduction of the Look-Aside Interface. The obtained results of our approach offers a considerable gain in terms of heuristics and reduction techniques correctness as to commercial model checking; however a small penalty is paid in terms of CPU time and memory usage

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Thesis (PhD)
Authors:Abed, Sa'ed Rasmi H
Pagination:xv, 156 leaves : ill. ; 29 cm.
Institution:Concordia University
Degree Name:Ph. D.
Program:Electrical and Computer Engineering
Date:2008
Thesis Supervisor(s):Ait Mohamed, Otmane
Identification Number:LE 3 C66E44P 2008 A24
ID Code:976015
Deposited By: Concordia University Library
Deposited On:22 Jan 2013 16:18
Last Modified:13 Jul 2020 20:09
Related URLs:
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top